Positive systems analysis via integral linear constraints

Sei Zhen Khong1, Corentin Briat2, and Anders Rantzer3

1Institute for Mathematics and its Applications
University of Minnesota

2Department of Biosystems Science and Engineering
Swiss Federal Institute of Technology Zürich (ETH Zürich), Switzerland

3Department of Automatic Control
Lund University, Sweden

IEEE Conference on Decision and Control
18 Dec 2015
Positive systems analysis

- Quadratic forms are widely used for systems analysis: Lyapunov inequality, Kalman-Yakubovich-Popov Lemma, integral quadratic constraints etc.

- Analysis can be simplified if systems are known to be positive

 Lyapunov inequality:
 - $\exists P \succ 0$ such that $A^TP + PA \prec 0$
 - $\exists z > 0$ (element-wise) such that $Az < 0$

 Kalman-Yakubovich-Popov Lemma:
 - $\exists x, u, p \geq 0$ such that
 $$Ax + Bu \leq 0 \quad \text{and} \quad Q \begin{bmatrix} x \\ u \end{bmatrix} + \begin{bmatrix} A^T \\ B^T \end{bmatrix} p \leq 0$$

 - The theory of **integral linear constraints** (ILCs)?

Khong, Briat, Rantzer (UMN, ETH, Lund)
Outline

1. Positive closed-loop systems
2. Robust stability
3. Geometric intuition
4. Example
Outline

1. Positive closed-loop systems
2. Robust stability
3. Geometric intuition
4. Example
A system G is said to be positive if
\[
u(t) \geq 0 \ orall t \geq 0 \implies y(t) = (Gu)(t) \geq 0 \ orall t \geq 0\]

Given a positive feedback interconnection of two positive systems G_1 and G_2, is the closed-loop map $(d_1, d_2) \mapsto (u_1, y_1, u_2, y_2)$ always positive?

No!
A system G is said to be positive if

$$u(t) \geq 0 \quad \forall t \geq 0 \implies y(t) = (Gu)(t) \geq 0 \quad \forall t \geq 0$$

Given a positive feedback interconnection of two positive systems G_1 and G_2, is the closed-loop map $(d_1, d_2) \mapsto (u_1, y_1, u_2, y_2)$ always positive?

No!
Positive systems

A simple counterexample:

\[d_2 = 0 \]

\[d_1 \rightarrow u_1 = \frac{1}{1 - 2} = -1 \]
Feedback interconnections

\[\hat{G}_1(s) = C_1 (sI - A_1)^{-1} B_1 + D_1 \]
\[\hat{G}_2(s) = C_2 (sI - A_2)^{-1} B_2 + D_2 \]

- \(A_1 \) and \(A_2 \) are Metzler and \(B_1 \geq 0, B_2 \geq 0, C_1 \geq 0, C_2 \geq 0, D_1 \geq 0, \) and \(D_2 \geq 0 \) (element-wise) implies \(G_1 \) and \(G_2 \) are positive.

Positivity of closed-loop map [Ebihara et. al. 2011]

If \(\rho(D_1D_2) < 1 \), then \((d_1, d_2) \mapsto (u_1, y_1, u_2, y_2)\) is **positive**.
Feedback interconnections

Suppose (nonlinear) $G_i : \mathbb{L}_{1e} \to \mathbb{L}_{1e}$ are causal and positive, define

$$
\alpha(G_i) := \sup_{T > 0} \inf_{\Delta T > 0} \sup_{x,y \in \mathbb{L}_{1e} : P_T x = P_T y : P_T + \Delta T (x-y) \neq 0} \frac{\|P_{T+\Delta T} (G_i x - G_i y)\|_1}{\|P_{T+\Delta T} (x - y)\|_1}
$$

Positivity of closed-loop map

If $\alpha(G_1) \alpha(G_2) < 1$, then $(d_1, d_2) \mapsto (u_1, y_1, u_2, y_2)$ is positive
Outline

1 Positive closed-loop systems

2 Robust stability

3 Geometric intuition

4 Example
Robust stability of feedback systems

Integral quadratic constraints (IQC) [Megretski & Rantzer 97]

Given bounded, causal $G_1 : \mathbf{L}_2 \rightarrow \mathbf{L}_2$ and $G_2 : \mathbf{L}_2 \rightarrow \mathbf{L}_2$, suppose there exists linear $\Pi : \mathbf{L}_2 \rightarrow \mathbf{L}_2$ such that

- $[\tau G_1, G_2]$ is well-posed for all $\tau \in [0, 1]$;
- $\int_0^\infty v(t)^T (\Pi v)(t) \, dt \geq 0 \quad \forall v \in \mathcal{G}(\tau G_1) := \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \in \mathbf{L}_2 : y = \tau G_1 u \right\}, \tau \in [0, 1]$;
- $\int_0^\infty w(t)^T (\Pi w)(t) \, dt \leq -\epsilon \int_0^\infty |w(t)|^2 \, dt \quad \forall w \in \mathcal{G}^'(G_2)$,

then $[G_1, G_2]$ is stable.
Integral quadratic constraint (IQC) examples

<table>
<thead>
<tr>
<th>Structure of G_1</th>
<th>Π</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>G_1 is passive</td>
<td>$\begin{bmatrix} 0 & I \ I & 0 \end{bmatrix}$</td>
<td>$x(j\omega) \geq 0$</td>
</tr>
<tr>
<td>$|G_1| \leq 1$</td>
<td>$\begin{bmatrix} x(j\omega)I & 0 \ 0 & -x(j\omega)I \end{bmatrix}$</td>
<td>$X = X^* \geq 0, Y = -Y^*$</td>
</tr>
<tr>
<td>$G_1 \in [-1, 1]$</td>
<td>$\begin{bmatrix} X(j\omega) & Y(j\omega) \ Y(j\omega)^* & -X(j\omega) \end{bmatrix}$</td>
<td>$X = X^* \geq 0, Y = -Y^*$</td>
</tr>
<tr>
<td>$G_1(t) \in [-1, 1]$</td>
<td>$\begin{bmatrix} X & Y \ Y^T & -X \end{bmatrix}$</td>
<td>$X = X^* \geq 0, Y = -Y^*$</td>
</tr>
<tr>
<td>$G_1(s) = e^{-\theta s} - 1$, for $\theta \in [0, \theta_0]$</td>
<td>$\begin{bmatrix} x(j\omega)\rho(\omega)^2 & 0 \ 0 & -x(j\omega) \end{bmatrix}$</td>
<td>$\rho(\omega) = 2 \max_{</td>
</tr>
</tbody>
</table>

Khong, Briat, Rantzer (UMN, ETH, Lund)

Integral linear constraints
Robust stability of positive feedback systems

Integral linear constraints

Given bounded, causal, linear $G_1 : \mathcal{L}_{1e}^m \to \mathcal{L}_{1e}^P$ and $G_2 : \mathcal{L}_{1e}^P \to \mathcal{L}_{1e}^m$, suppose there exists $\Pi \in \mathbb{R}^{1 \times m+p}$ such that

- $[\tau G_1, G_2]$ is well-posed and positive for all $\tau \in [0, 1]$;
- $\int_0^\infty \Pi v(t) \, dt \geq 0 \quad \forall v \in \mathcal{G}_+(\tau G_1) := \left\{ \begin{bmatrix} u \\ y \end{bmatrix} \in \mathcal{L}_{1+} : y = \tau G_1 u \right\}, \tau \in [0, 1]$;
- $\int_0^\infty \Pi w(t) \, dt \leq -\epsilon \int_0^\infty |w(t)| \, dt \quad \forall w \in \mathcal{G}'_+(G_2)$,

then $[G_1, G_2]$ is stable.

When G_1 and G_2 are LTI, conditions can be stated as

- $\Pi \begin{bmatrix} I \\ \hat{G}_1(0) \end{bmatrix} \geq 0$ and $\Pi \begin{bmatrix} \hat{G}_2(0) \\ I \end{bmatrix} < 0$
Outline

1. Positive closed-loop systems
2. Robust stability
3. Geometric intuition
4. Example
Geometric interpretation of integral quadratic constrains

\[\mathcal{G}(G_1) + \mathcal{G}'(G_2) = L_2; \]

\[\mathcal{G}(G_1) \cap \mathcal{G}'(G_2) = \{0\} \]
Geometric interpretation of integral quadratic constraints

Integral quadratic constraints (IQCs)

\[\int_0^\infty v(t)^T (\Pi v)(t) \, dt \geq 0 \quad \forall v \in \mathcal{G}(G_1); \]

\[\int_0^\infty w(t)^T (\Pi w')(t) \, dt \leq -\epsilon \int_0^\infty |w(t)|^2 \, dt \quad \forall w \in \mathcal{G}'(G_2) \]
Geometric interpretation of integral linear constraints

$$\mathcal{G}_+(G_1) + \mathcal{G}_+(G_2) = \mathbf{L}_{1+};$$

$$\mathcal{G}_+(G_1) \cap \mathcal{G}_+(G_2) = \{0\}$$
Geometric interpretation of integral linear constraints

\[\mathcal{G}_+(G_1) \]

\[\mathcal{G}_+',(G_2) \]

Integral linear constraints

- \[\int_0^\infty \Pi v(t) \, dt \geq 0 \quad \forall v \in \mathcal{G}_+(G_1) ; \]
- \[\int_0^\infty \Pi w(t) \, dt \leq -\epsilon \int_0^\infty |w(t)| \, dt \quad \forall w \in \mathcal{G}_+',(G_2) \]
Outline

1. Positive closed-loop systems
2. Robust stability
3. Geometric intuition
4. Example
LTI systems

\[
\hat{G}_1(s) = C_1(sI - A_1)^{-1}B_1 + D_1 \\
\hat{G}_2(s) = C_2(sI - A_2)^{-1}B_2 + D_2
\]

- \(A_1 \) and \(A_2 \) are Metzler, Hurwitz and \(B_1 \geq 0, B_2 \geq 0, C_1 \geq 0, C_2 \geq 0, D_1 \geq 0, \) and \(D_2 \geq 0 \)

Robust stability [Ebihara et. al. 2011] [Tanaka et. al. 2013]

If \(\rho(\hat{G}_1(0)\hat{G}_2(0)) < 1 \), then \([G_1, G_2]\) is stable

Can be recovered with integral linear constraint theorem with

\[\Pi := z^T [\hat{G}_1(0) \ \ -I] , \]

where \(z^T (\hat{G}_1(0)\hat{G}_2(0) - I) < 0 \)
Conclusions:

- Sufficient condition for positivity to be preserved under feedback
- Developed integral linear constraints theory for analysis of feedback interconnections with positive closed-loop mappings
- Many extensions possible:
 - Positive coprime factorisations
 - Integral linear constraints with time-varying multipliers
 - LMI conditions for verifying integral linear constraints
 - Stabilisation of open-loop unstable dynamics?