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Summary

This thesis is concerned with the stability analysis, observation and control of LPV time-delay
systems. The main objectives of the thesis are

• the development of adapted and possibly low conservative stability sufficient conditions
for LPV time-delay systems.

• the development of new advanced control/observation strategies for such systems using
new tools developed in the thesis, such as specific relaxation techniques of Linear and
Nonlinear Matrix Inequalities.

For that purpose, this thesis is subdivided is three parts:

• The first part, composed of Chapters 1 and 2, aims at providing a sufficiently detailed
state of the art of the representation and stability analysis of both LPV and time-
delay systems. In both cases, the importance of LMI in stability analysis is strongly
emphasized. Several fundamental results are bridged in order to show the relations
between different theories and this constitutes the first part of the contributions of this
work.

• The second part, composed of Chapter 3, consists in a presentation of several (new)
preliminary results that will be used along the thesis. This part contains most of the
contributions of this work.

• Finally, the third part, composed of Chapters 4 and 5, uses results of the second part in
order to derive efficient observation, filtering and control strategies for LPV time-delay
systems.
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Introduction and Structure of the
Thesis

Context of the Thesis

This thesis is the fruit of a three years work (2005-2008) spent in the GIPSA-Lab1 (former
LAG2) in the SLR3 Team. The topic of the thesis is on Robust/LPV Control and Obser-
vation of LPV Time-Delay Systems under supervision of Olivier Sename (Professor at
Grenoble-INP4) and Jean-François Lafay (professor at Centrale Nantes, IRCCyN5), Nantes,
France).

This thesis is in the continuity of works of Annas Fattouh [Fattouh, 2000, Fattouh et al.,
1998], Olivier Sename [Sename, 2001, 1994, Sename and Fattouh, 2005] and more deeply
Jean-François Lafay who was the Olivier Sename’s thesis supervisor (the thesis was on the
controllability of time-delay systems).

During the thesis the Rhônes-Alpes Region granted me of a scolarship in order to travel
and collaborate in a foreign laboratory. I went to School of Electrical and Computer Engi-
neering (ECE) in GeorgiaTech (Georgia Institute of technology) to work with Erik I. Verriest
on the topic of time-delay systems with applications in the control of disease epidemics.
The collaboration gave rise to a conference paper ’A New Delay-SIR Model for Pulse
Vaccination’ [Briat and Verriest, 2008] and potentially to a journal version according to
the invitation of the editor of the new Elsevier journal: ’Biomedical Signal Processing and
Control’. A copy of the conference paper is given in Appendix K.

Finally, thanks to Emmanuel Witrant (GIPSA Lab), I incorporated the project on the
control of unstable modes in plasmas in Tokamaksn cores of the promising future (?) energy
production technology exploiting nuclear fusion. The collaboration is done with Erik Olofsson
and Per Brunsell(KTH6) and S-I. Niculescu (LSS7). The work has led to the conference paper
[Olofsson et al., 2008] given in Appendix L.

1Grenoble Image Parole Signal Automatique Laboratory - Grenoble Image Speech Signal Control Systems
2Laboratoire d’Automatique de Grenoble - Grenoble Control Systems Laboratory
3Systèmes Linéaires et Robustesse - Linear Systems and Robustness
4Grenoble INstitut Polytechnique - Grenoble Institute of Technology
5Institut de Recherche en Communications et Cybernétique de Nantes - Nantes Research Institute in

Communications and Cybernetics
6Kungliga Tekniska högskolan - Royal Institute of Technology, Sweden
7Laboratoire des Signaux et Systèmes - Signals and Systems Laboratory
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Introduction and Motivations

At the beginning of the century, Emile Picard (french mathematician) wrote an interesting
remark in the proceedings of the 4th International Mathematician Congress in Rome (the
complete text will be provided at the end of this section). He noticed that while classical
mechanics equations, the future is immediately predicted using current information (speed
and position), while considering living beings, the future cannot be predicted in the same
way. Indeed, the future evolution would depend on the current information but also on past
events. Mathematically speaking, the evolution would consider integral term taken from past
to current time and would describe the heredity. In the 1970s such equations began to be
studied and these studies give rise to several books in the 1980s. Since then, time-delay
systems (which is the common denomination) have gained more and more attention in a
wide variety of problems such as the stability analysis, control and observation design. . . Even
if it was at the beginning only coming from mathematical interests and ideas, it turned
out that many physical, biological, economic systems can be modeled as time-delay systems
(examples will be given in Section 2.1) and strengthened their importance in modern theories
of dynamical systems, both in mathematical and control systems frameworks.

Due to the particular structure of these systems, lots of specific approaches have been
developed and generalized in order to study their stability, controllability and many other
properties. As a fundamental example, Lyapunov theory has been extended to this type of
systems through two celebrated theorems, namely the Lyapunov-Krasovskii and Lyapunov-
Razumikhin theorems. From these results a lots of advanced has been made but many prob-
lems remain open.

On the other hand, in the stability analysis of linear systems, a great problem is the
robustness of the stability. In few words, it consists in determining the stability of a linear
system whose constant coefficients belong to a certain interval. Several tools have been
deployed to study these systems such as µ-analysis and has led to good results and many
applications, notably in aerospace. Furthermore, robust stabilization is also an important
research framework and is still an open problem.

One main problem is the case of systems which are not robustly stabilizable and, in this
case, another strategy should be developed. Here comes LPV control, the idea behind LPV
control is to measure some parameters and use them in the control law. It turns out that,
using such a control strategy, the class of systems which are stabilizable is then enlarged.

Moreover, LPV systems can be used to approximate nonlinear systems and hence sys-
tematic and generic ’LPV tools’ can be then applied to derive nonlinear control laws for
nonlinear systems. An other interest of LPV control is the design of tunable controllers:
external parameters can be added in the design in order to characterize different modes of
working.

The idea of merging time-delay systems and LPV systems is not new but is rather
marginal. Indeed, only a few work are based on the stability analysis and control synthesis.
No work exists on the observation and few results are provided for the filtering problems. At
first sight, it seems straightforward to find solutions to problems involving LPV time-delay
systems since it would be enough to merge the theories. Actually, many results deployed in
robust stability and robust control for finite dimensional systems do not work with time-delay
system and this makes the main difficulty of the study of LPV time-delay systems.

Emile Picard’s original text [Kolmanovskii and Myshkis, 1999]:
”Les équations différentielles de la mécanique classique sont telles qu’il y en résulte que
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le mouvement est déterminé par la simple connaissance des positions et des vitesses, c’est à
dire par l’état à un instant donné et à l’instant infiniment voisin”.

”Les états antérieurs n’y intervenant pas, l’hérédié y est un vain mot. L’application de
ces équations où le passé ne se distingue pas de l’avenir, où les mouvements sont de nature
réversibles, sont donc inapplicables aux êtres vivants”.

”Nous pouvons rêver d’équations fonctionelles plus compliquées que les équations clas-
siques parce qu’elles renfermeront en outre des intégrales prises entre le temps passé très
éloigné et le temps actuel, qui apporteront la part de l’hérédité”.

Emile Picard, ”La mathématique dans ses rapports avec la physique, Actes du IVe congrès
international des Mathématiciens, Rome, 1908

English translation:
Differential equations of classical mechanics are such that the movement is determined by

the only knowledge of positions and speeds, that is to say by the state at a given instant and
at the instant infinitely nearby.

Since the anterior states are not involved, heredity is a vain word. The application of
these equations where the past and future are not distinguishable, where the movements are
by nature reversible, are hence unapplicable to living beings.

We may dream about more complex functional equations than classical equations since
they shall contain in addition integral terms taken from a distant past time instant and the
current time instant, which shall bring the share of heredity.

Structure of the Thesis

Chapter 1 provides an overview of different types of representation for a LPV system. For
each model, several adapted stability tests are presented and are compared between
each others.

Chapter 2 gives an insight of different representations of time-delay systems and several
physical examples show the interest of such systems. Then a large part is concerned
with the stability analysis of these systems in the time domain in which several methods
of the literature are presented and compared. A last section address the problem of the
stability in presence of uncertain delay.

Chapter 3 is devoted to preliminary notions and results used along the thesis. First of all,
spaces of delays and parameters are clearly defined. Second, new methods of relaxation
of parameter dependent LMI and matrix inequalities with concave nonlinearity are
developed and analyzed. Then a method to compute explicit expression of parameter
derivatives in LPV polytopic systems is given using linear algebra. Finally, several
Lyapunov-Krasovskii based techniques are given in order to show asymptotic stability
of LPV systems.

Chapter 4 presents results in observation and filtering of LPV systems using results provided
in Chapter 3. Several types of observers and filters are studied in both certain and
uncertain frameworks.

Chapter 5 concludes on the stabilization of LPV time-delay systems. Several structures
of controllers are explored according to the presence of a delayed term in the con-
trol law; both state-feedback and dynamic output feedback controllers are synthesized.
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This chapter also presents a new type of controllers which is called ’delay-scheduled’
controllers whose gains are smoothly scheduled by the delay value.

Contributions

The contribution of the thesis is plural:

• Methodological contributions

• Theoretical contributions

Methodological contribution
The methodological contribution is based on a common remark by reading journal and

conference papers. Why most of the paper addresses stability of time-delay systems ? Why
there only few papers on the control and observation or filtering ? The main reason comes the
fact that, while considering time-delay systems, it is not sufficient to substitute the closed-
loop system expression in the stability condition to derive efficient and easy to compute
constructive stabilization conditions (taking generally the form of a set of LMIs). This is
mainly due to the presence of a high number of decision matrices in the stability conditions.

A global method is to perform a relaxation after substitution of the closed-loop system
(which is the direct and efficient method used for finite dimensional systems). We emphasize
in this thesis that this may be not the right choice since this alters the efficiency of the
initial result. So we preconize to perform a relaxation technique on the initial problem in
order to turn the original stability condition into a form which is more suitable for synthesis
purposes. Hence a step as added in the methodology of design and results in better results
and a great interest of the relaxation is its adaptability on a wide variety of different LMI
stability conditions. Indeed, it will be shown that this relaxation applies on every stability
tests developed in this thesis.

Theoretical contributions
The theoretical contributions are multiple and address several different topics:

• A new method for relaxation of polynomially parameter dependent LMI is provided.
This approach allows to turn the polynomial dependence on the parameters into a linear
one by introducing a supplementary decision variable, generally called ’slack’ variable.
An example is given to show the effectiveness of the approach.

• Concave nonlinearities (involving inverse of matrices) in matrix inequality are quite dif-
ficult to handle and their simplification (or removal) generally results in conservative
conditions. Bounds involving completion by the squares and using the cone complemen-
tary algorithm can be used but while the former is too conservative, the latter cannot
be used with parameter dependent matrices. To solve this problem we have deployed a
new exact relaxation which turns the rational dependence into a bilinear one and allows
for the application of simple iterative algorithm.

• Several LMI tests have been generalized to the LPV case and the relaxation method
have been applied in order to provide new LMI tests more suitable for design strategies.

• A new Lyapunov-Krasovskii functional has been developed in order to consider systems
with two delays in which the delays satisfy a algebraic constraint. This functional
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addresses well the problem of stabilizing a time-delay system with a controller with
memory embedding a delay which is different from the system one.

• A new strategy to control time-delay systems has been introduced and has been called
’delay-scheduled’ controllers. This type of controllers are designed using a LPV for-
mulation of time-delay systems. Then using LPV design tools, it is possible to derive
controllers whose gain is smoothly scheduled by the delay value, provided that it is
measured or estimated. Since the delay is viewed as a parameter, then it is possible
to consider uncertainties on the delay and perform robust stabilization in presence of
measurement/estimation errors.

• Finally, the last contributions are based on the application of new and adapted stability
tests to observation, filtering and control. Such methods will be shown to lead to
interesting results.

How to read the thesis

This thesis has been written in order to be sufficient unto oneself. Hence, leveled readers
should consider only the core of the thesis including Chapters 3, 4 and 5. Readers who are
not really familiar with LPV or time-delay systems should read Chapters 1 or 2 respectively.

The profane reader should consider the appendices first in order to learn the fundamentals
of automatic control. Fundamentals on linear algebra are given in Appendix A. Their pre-
sentation is motivated by the fact that linear algebra is extensively used in linear dynamical
system theory, introduced in Appendix B, in which the concept of dynamical systems, stabil-
ity of dynamical systems with Lyapunov theory is presented. Since in modern control theory,
new more representative spaces of signals are used and allow to elaborate powerful result,
they are described in Appendix C. In Appendix D, a brief history of Linear Matrix Inequal-
ities (LMIs) is provided with examples and a simple algorithm to solve them. Then lots of
important and widely used technical results on robust/LPV control and LMIs are provided in
Appendix E while interesting technical results on time-delay systems are given in Appendix F.
Simple frequency domain methods for stability analysis of time-delay systems are introduced
in Appendix G. Appendices H and I provides results on the controllability and observability
of LPV and time-delay systems respectively. Finally Appendix J completes, with less relevant
results, Chapter 4 on the observation and filtering of LPV time-delay systems.
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Chapter 1

Overview of LPV Systems

L
inear Parameter Varying (LPV) systems belong to the general class of Linear
Time-Varying Systems. The main difference stems from the particularity that the
time-dependence is, in some words, ’hidden’ into parameters. Indeed, while the evolu-

tion of the time-varying coefficients are a priori known (e.g. sin(t)), the evolution over time
of the parameters may be unknown. Actually, the boundary of the inclusion between these
types is absolutely unclear but is relative to the fields of application and techniques applied
to analyze (and finally control) these systems. A strict analysis does not fall into the context
of this introduction and only LPV systems will be considered in the remaining of this chap-
ter. But, before introducing the interests and motivations for studying LPV systems, let us
provide the expression of a generalized LPV system, taking the form of a non-autonomous
non-stationary system of linear differential equations with vectorial equalities:

ẋ(t) = A(ρ(t))x(t) +B(ρ(t))u(t) + E(ρ(t))w(t)
z(t) = C(ρ(t))x(t) +D(ρ(t))u(t) + F (ρ(t))w(t)
y(t) = Cy(ρ(t))x(t) + Fy(ρ(t))w(t)

(1.1)

where x ∈ X ⊂ Rn×n, u ∈ U ⊂ Rm, w ∈ W ⊂ Rp, z ∈ Z ⊂ Rq and y ∈ Y ⊂ Rt are respec-
tively the state of the system, the control input, the exogenous input, the controlled output
and the measured output. For more details on dynamical systems and related fundamental
results, the reader should refer to Appendix B.

It is clear, from the expressions, that the behavior of output signals depends on input
signals and on parameters acting themselves in an internal fashion on the system.

The parameters ρ are always assumed to be bounded:

ρ ∈ Uρ ⊂ Rk and Uρ compact (1.2)

From these considerations the questions of stability, controllability and observability are
not as ’easy’ as in the LTI case and remain important problems beginning to be solved
efficiently by recent techniques, mainly using LMIs. Questions on controllability and observ-
ability are treated in Appendix H.

The great interest of LPV systems is their ability to model a wide variety of systems,
from nonlinear to LTV systems passing through switched systems; this will be illustrated
in Section 1.1. For instance, we may think to an automotive process where the dampers
have to be controlled. In this case, possible parameters may be the speed of the car and
position/orientation of the car since their are consequences of the driver and road behaviors. It

1
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is clear that the behavior of the vehicle is dissimilar for different speeds and road configuration.
Hence it would be more efficient if the control to be applied to the dampers would depend on
these parameters.

The second interest, illustrated in the latter small scenario, resides in the control of LPV
systems: the flexibility and adaptability that LPV control suggests. Indeed, the fact that some
parameters could be used internally in the control law gives rise to an interesting opportunity
of improving system stability and performances. Coming back to our little scenario, if one
wishes to synthesize a control law without any information on the speed and determine a
single LTI controller, this falls into the robust control framework and the stabilization of the
process may be difficult to obtain or may lead to bad performances. On the other hand,
if the speed is measured and ’internally’ used in the control law, the stabilization would be
a more simple task and the closed-loop system would certainly have better performances;
this is the advantage of the LPV control over the robust control, provided that real-time
measurements of potential parameters are possible. We provide below some applications of
the LPV modeling and LPV control for a wide variety of systems. It is important to note
that LPV control techniques can be easily combined with recent results on H∞, H2, µ norms,
to give enhanced control laws with performances and robustness specifications.

We will end this succinct introduction by examples provided in the literature. Since, in
many cases, heavy computations are performed to turn the nonlinear system formulation into
a LPV dynamical system, only a simple case is detailed hereunder while others are briefly
enumerated with corresponding references.

Inverted Pendulum - robust control and performances

This application has been provided in Kajiwara et al. [1999] where a model is given in
the LPV form using a change of variable. The inverted pendulum is constituted of two arms
moving in the vertical plane. The LPV model is given by:

d

dt




z
ż
rx
φ̇1


 = A(ρ)




z
ż
rx
φ̇1


+




0
0
0
Ka

Ta



u (1.3)

with

A(ρ) =




0 1 0 0
0 0 0 0
0 0 0 0

0 0 0 − 1
Ta




+
3

4`2
g




0
1
0
0



[

1 0 −1 0
]

+ ρ




0
0
1
0



[

0 0 0 1
]

where φ1 is the angle of the first arm, φ2 + φ1 is the angle of the second arm (with respect
to the ground), ry = 2`1 sin(φ1), rx = 2`1 cos(φ1), `1 is the half of the length of the arm 1,
`2 is the half of the length of the arm 2, g is the gravitational acceleration, the parameter

ρ = ry, Ka, Ta are constant parameters of the actuator (a motor here) and z := rx
4
3
`2φ2 is

the change of variable used to formulate the model as a LPV system.
According to Kajiwara et al. [1999], the obtained control law leads to encouraging results

(the paper is from 1999, the beginning of the LPV trend) for the LPV formulation. The LPV
approach has led in this application to an enhancement of the stability and performances.
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Automotive Suspension System1

Another application of LPV control is the performance adaptation that can be performed.
Indeed, parameters can be introduced in weighting functions in Loop Shaping strategies in
order to modify in real time the bandwidth, the weight on the control law.

For instance, in [Poussot-Vassal, 2008], control of semi-active suspensions is addressed
in view of performing a global chassis control. Since semi-active suspensions, in which the
damper coefficient is controlled, can only absorb energy but not supply it, the control input is
constrained to belong to a specific set depending on the deflection speed which is the derivative
of the difference the sprung mass (zs) and the unsprung mass zus, i.e. żs − żus. Figures 1.1
and 1.2 represent different kind of suspension systems with associated characteristics. Ideally,
the force produced by the suspension must be positive (negative) if the deflection speed is
positive (negative).

Figure 1.1: Different types of suspensions, from left to right: passive, semi-active and active
suspensions

Figure 1.2: Characteristics of passive, semi-active (left) and active (right) suspensions

Since in the H∞ control framework such constraint cannot be explicitly specified then the

1Thanks to Charles Poussot-Vassal for providing material on this topic
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idea is to use a parameter dependent weighting functions on the control input of the form

Wu(s, ρ) = ρ(u− v)
1

s/1000 + 1

where u is the computed force and v is the achievable force which satisfies the quadrant
constraint. The parameter ρ is chosen to satisfy the following relation

ρ(ε) = 10
µε4

µε4 + 1/µ
)

for sufficiently large µ > 0, e.g. 108. In this case, the parameter belongs to [0, 10] and has the
form depicted on Figure 1.3 and the bode diagram of the inverse of the weighting function is
plotted on Figure 1.4 where it is shown that if ρ is high (i.e. the computed force is far from
the achievable force) the gain applied by the inverse of the filter on the control input is very
low. This has the effect of having a control input which is close to 0, value which is always
achievable.

Figure 1.3: Graph of the parameter ρ with respect to u− v
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Figure 1.4: Bode diagram of 1/Wu(s, ρ) for different values of ρ

This example shows the interest of parameter varying systems and parameter varying con-
trol; many other applications of such technique may be developed, for instance let us mention
parameter varying bandwidth of the closed-loop system, parameter dependent disturbance
rejection where the parameter would correspond to the pulsation of the disturbance, and so
on. . .

A wide range of applications

We give here a non-exhaustive list of application of LPV modeling and control in the
literature. In Wei and del Re [2007], the modeling and control of the air path system of
diesel engines in view of reducing polluting gas is addressed. This paper shows that a LPV
formulation leads to interesting results in terms of simplicity of implementation and system
performances. The control of elements in diesel engines is considered in Gauthier et al.
[2005, 2007a,b], He and Yang [2006], Jung and Glover [2006] where the air flow, the fuel
injection and/or the power unit are controlled. In Gilbert et al. [2007], Reberga et al. [2005],
LPV modeling and synthesis are applied to turbofan engines. Electromagnetic actuators are
piloted in Forrai et al. [2007] while a robotic application is presented in Kwiatkowski and
Werner [2005]. In Liu et al. [2006a,b], LPV controller is applied to power system regulator.
In Lim and How [1999], Tan and Grigoriadis [2000], White et al. [2007] applied in the synthesis
of missile autopilot. In Lu et al. [2006], the control of the performances of the attitude of an
F-16 Aircraft in response of the pilot orders for different angles of attack is addressed. LPV
vehicle suspensions modeling and control is presented in Gaspard et al. [2004], Poussot-Vassal
et al. [2006, 2008a,b] while global chassis control (attitude control) is handled in Gáspár et al.
[2007], Poussot-Vassal et al. [2008c]. Finally, the control of nonuniform sampled-data systems
is treated in a LPV fashion in Robert et al. [2006]. This list shows the efficiency and wide
applicability of LPV control on theoretical and practical applications and motivates further
studies on this topic. It will be shown later in this thesis that LPV methods can be used to
control, in a novel fashion, time-delay systems with time-varying delays (see also [Briat et al.,
2007a, 2008b]).
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1.1 Classification of parameters

The behavior of LPV systems highly depends on the behavior of the parameters. Indeed, the
global system is defined over a continuum of systems induced by a continuum of parameters.
If the parameters take discrete values (the set of values is finite) or are piecewise constant
continuous, the system would have a specific behavior and, in general, a specific denomination
is given for these particular kinds of systems over these peculiar parameter trajectories; this
will be deeper detailed further. This motivates the needs for classifying parameters in order to
differentiate every behavior and therefore, any system that may arise. Two proper viewpoints
can be adopted: either a mathematical one, centering the analysis on mathematical properties
of the parameters trajectories such as continuity and differentiability; or a physical point of
view, focusing on the physical meaning of parameters such as measurability and computability.
Such a classification aims at discussing on the validity and the meaning of LPV modeling in
order to apply control strategies. It is important to note that while the first classification
is important for a theoretical point of view the second is crucial to apply LPV analysis and
design methods on real physical systems.

1.1.1 Physical Classification

In general, the parameters can be sorted in three types, depending on their content type and
their origin.

1.1.1.1 Parameters as functions of states

The parameters may be defined as functions of states, and such cases arise when LPV models
are used to approximate nonlinear models; for instance the nonlinear system

ẋ(t) = −x(t)3 (1.4)

can be approximated by the LPV system

ẋ(t) = −ρ(t)2x(t) (1.5)

where ρ(t) := x(t).
LPV system is which states appear in the parameters expressions are called Quasi-LPV

systems; see [He and Yang, 2006, Jung and Glover, 2006, Liberzon et al., 1999, Shin, 2002,
Tan and Grigoriadis, 2000, Wei and del Re, 2007, White et al., 2007] for some applications of
quasi-LPV systems.

The main difficulty of quasi-LPV comes from the fact that theoretically, the states are
unbounded, while by definition, the parameters are. If, by chance, the functions mapping
the states to the parameter values are bounded for every state values, the problem would
not occur (but this assumption is too strong to be of interest). On the contrary, if the
functions are unbounded, then a supplementary condition should be added in order to satisfy
the boundedness property of the parameters values. Fortunately, in practice, the states are
generally bounded and such problem only occurs in theoretical considerations.

It is worth noting that generally, several LPV systems correspond to a nonlinear system
and finding the ’best’ LPV model remains a challenging open problem [Bruzelius et al., 2004,
Mehendale and Grigoriadis, 2004, Shin, 2002]. Indeed, in the latter example, ρ(t) = x(t)2

would have be chosen. But the latter example is a simple one since the origin (i.e. x = 0) is
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globally asymptotically stable attractive point and hence any parametrization would give an
asymptotically stable LPV system. On the contrary, let us consider the Van-der-Pol equation
(with reverse vector field) considered in [Bruzelius et al., 2004]:

ẋ1(t) = −x2(t)
ẋ2(t) = x1(t)− a(1− x1(t)2)x2(t)

(1.6)

with a > 0. It is well-known that a limit cycle exists for such systems and for systems with
reverse vector field, each trajectory starting inside the limit-cycle converges to 0 while each
trajectory starting outside diverges. In [Bruzelius et al., 2004], it is shown that a ’good’ LPV
approximation, giving the exact stability region (i.e. interior of the limit cycle), is difficult to
obtain.

1.1.1.2 Internal Parameters

The parameters may be used to model time-varying parts involved in the system expression
(assuming that time-varying terms are bounded), in view of simplifying the stability analysis
and/or using them in advanced control laws. For instance, the LTV system:

ẋ(t) = (a(t) + b sin(t))x(t) , a(t) bounded over time (1.7)

can be represented by
ẋ(t) = (ρ1(t) + bρ2(t))x(t) (1.8)

where ρ1(t) := a(t) and ρ2(t) := sin(t).
The term ’internal parameters’ means that the information used to compute the parameter

values is part of the system dynamical model and elapsed time. This is put in contrast with
the last class of parameters exposed hereunder.

1.1.1.3 External parameters

External parameters are involved in control and observation design problems only. Such
’virtual’ parameters can be added in the design (for instance in frequency weighting functions
in H∞ control/observation) in order to modify, in real-time, the behavior of the closed-loop
system. These external signals may stem from a monitoring system and model state of
emergency or anything else, in view of modifying the behavior of the system, such as the
system bandwidth, gains. . .

Let us consider the SISO LTI system

ẋ(t) = x(t) + u(t) (1.9)

where x ∈ R and u ∈ R are respectively the system state and the control input. It is proposed
to determine a control law such the system has a variable and controlled bandwidth, hence
the following control law is suggested:

u(t) = −(1− ρ(t))x(t) + ρ(t)r(t), ρ(t) > 0

where r is the reference to be tracked.
The interconnection yields:

ẋ(t) = ρ(t)(r(t)− x(t)), ρ(t) > 0
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From this latter expression, the external parameter ρ(t) controls the bandwidth of the
closed-loop system and tries to maintain the tracking error to 0. In this scenario, a monitoring
system including heuristics would be able to manage the parameter value with respect to
higher-level data.

1.1.2 Mathematical Classification

On the other hand, the mathematical ordering aims at sorting the parameters behavior while
considering mathematical properties of the trajectories. Consequently, these properties will
be taken into account in stability tests in order to provide less conservative results than by
ignoring these characteristics.

1.1.2.1 Discrete vs. Continuous Valued Parameters

The first idea is to isolate the parameters with respect to the type of values (or more precisely
the type of the image set of the mapping) that they take. Indeed, parameters must be viewed
as functions of time t ∈ R+:

ρ : R+ → ρ(R+) (1.10)

where ρ(R+) is the image set of R+ by the vector valued function ρ(·).
Recall that the image set of the parameters is always bounded, then one can easily imagine

that the image set is continuous or discrete, for instance

ρ : t→ sin(t) (1.11)

maps t ∈ T into [−1, 1] continuously while

ρ : t→ [sin(t)]r (1.12)

where [α]r is the rounding of α, maps T into {−1, 0, 1}.
The main difference between these image sets is that, while the first one contains an

infinite number of values, the second contains only three. Discrete valued image sets are
more simple to consider since one has to verify the stability at a finite number of points only.
Systems for which parameters take discrete values are called Switched Systems or Systems
with jump parameters (See Blanchini et al. [2007], Cheng et al. [2006], Colaneri et al. [2008],
Daafouz et al. [2002], Ghaoui and Rami [1997], Hespanha and Morse [1999], Liberzon et al.
[1999], Verriest [2005], Xie et al. [2002], Xu and Antsaklis [2002] and references therein for
more details on switched systems). It is clear, from the definition of discrete valued image
sets, that the parameters trajectories are discontinuous (more precisely they are piecewise
constant continuous) while for parameters with continuous image sets, continuity properties
are not imposed. This brings us to the idea of considering continuity as a second criterium
of classification of the parameters.

1.1.2.2 Continuous vs. Discontinuous Parameters

Values of the parameters with continuous image set may evolve within the image set, in two
different ways: either in a continuous or a discontinuous fashion.



1.1. CLASSIFICATION OF PARAMETERS 9

Definition 1.1.1 A continuous function f , defined over R+ such that

f : R+ → U

satisfies the following well-known statement:

∀ε > 0, ∃η > 0, |t− t0| ≤ η ⇒ |f(t)− f(t0)| ≤ ε, ∀ t0 ∈ R+ (1.13)

It is worth noting that there exists a large difference between switched systems (systems
with discrete valued parameters) and systems with continuously valued discontinuous param-
eters, e.g.

α(t) =
+∞∑

i=0

an(Γ(t− tn)− Γ(t− tn+1))

where an ∈ [a−, a+] ⊂ R, 0 = t0 < t1 < . . . < tn < . . . < tn+1 and Γ is the step function.
Indeed, the latter ones cannot be reduced to a finite number of systems and results in

a greater complexity than switched systems; this will be detailed further. The advantage
of continuous parameters is their potential differentiability and will be the last criterium to
classify parameters from a mathematical viewpoint.

1.1.2.3 Differentiable vs. Non-Differentiable Parameters

The final criterium is the first order differentiability of the parameters of some continuously
valued continuous parameters. By considering bounds on the parameter derivatives, it is
then possible to characterize the time-varying nature of the parameters in terms of speed of
variation.

Definition 1.1.2 A continuous differentiable function f , defined over R+ such that

f : R+ → U

satisfies the well-known statement

∃f ′ : ∀t0 ∈ R+ : lim
δt→{0−,0+}

f(t0 + δt)− f(t0)
t− t0

= f ′(t0) (1.14)

Note that in the classical definition of the derivative, the limit from each side of 0 must
coincide. This is clear that discontinuous functions do not satisfy such a condition and hence
have unbounded derivative at discontinuity. Therefore, no global bounds can be given for
discontinuous parameters. Moreover, from the differentiability property above, the parameter
ρ(t) defined by

ρ : t→ | sin(t)|, t ≥ 0 (1.15)

does not admit a derivative at points ti = kπ, k ∈ N. Indeed, the derivative value take the
value -1 and 1 respectively by computing the limit from the left and the right, and hence no
function f ′ exists. This is a consequence to the fact that the absolute value function is not
differentiable at 0.

The non-existence of the function f ′ is apparently annoying since the global differentia-
bility property is lost because of a finite number of isolated points only. Fortunately, since
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bounds on the parameters derivatives are necessary only, it is possible to show that this
obtrusive troublesome particularity does not introduce any supplementary difficulty.

In these cases (continuous functions with non-differentiable points), it is possible to affect
two bounded values of the derivative at each point for which the function is non-differentiable,
assuming of course, that the function is continuous at these points. For continuous parameters,
these two values of the extended derivative are always bounded and it is possible, by extension,
to consider that the ’derivative’ takes simultaneously all values in an bounded interval (in the
preceding example, the interval is [−1, 1]). For discontinuous functions, the fact that their
derivative values are unbounded is retrieved since the ’derivative’ takes all values of R. This
’exotic’ version is not without reminding us of the definition of the subgradient in nonsmooth
analysis [Clarke, 1983], defined presently in less formal fashion. Since we are only interesting
in bounds of the derivative, this definition is sufficient to provide them. This gives rise to the
following propositions.

Proposition 1.1.3 For a smooth function f : R+ → U , U compact of R, the bounds on the
derivative is defined by an interval [a, b] where a = mint∈R+ f

′(t) and b = maxt∈R+ f
′(t).

Proposition 1.1.4 For a continuous nonsmooth (Lipschitz) function we have

a = min{a1, a2} and b = max{b1, b2}

where

a1 = mint∈T−{ti}i f
′(t) b1 = maxt∈T−{ti}i f

′(t)
a2 = min {min{U1}, . . . ,min{UN}} b2 = max {max{U1}, . . . ,max{UN}}

(1.16)

where {ti} is the set of points where f is nonsmooth and Ui the set interval corresponding to
all values of the ’derivative’ at ti.

As a simple example, the derivative of the parameter defined by ρ(t) = | sin(t)| is bounded
by −1 and 1.

It is important to give an extra discussion on quasi-LPV systems. It is clear that, generally,
the functions involving the states of the system are continuously differentiable with respect
to them. Then, since the states are also differentiable, it is possible to tackle bounds on the
parameter derivatives. Note that these bounds would certainly depend on the bounds on the
derivatives of the states, but bounding derivative of the states in a problematic task. Let
us consider, for instance, that in the synthesis we fix ẋ ∈ [a, b], where x is the state of the
system. Then the controller is computed and the closed-loop system exhibits state derivatives
going out of the bounds a and b; for instance the state derivative belongs to [a − 1, b + 1].
This incoherent situation invalidates the synthesis and it cannot be proved exactly that the
system is stable for state derivative in [a−1, b+1]. Hence the synthesis should be made again
with an enlargement of the bounds of the state derivative bounds, e.g. [a− 2, b+ 2]. On the
other hand, by expanding to much the derivative bounds (or even considering infinite values),
this may result in a too high conservatism in the approach culminating in bad performances
of the closed-loop system. This is one of the main difficulty while dealing with quasi-LPV
systems which does not occur in any other types of parameters (i.e. internal and external).
Another problem arising in LPV system is the desynchronization between parameters and
system state in the stability analysis; this will be detailed later in the stability analysis of
LPV systems.
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1.2 Representation of LPV Systems

The aim of this section is to present different frameworks used to represent LPV systems with
their respective tools for stability analysis.

1.2.1 Several Types of systems...

Amongst the large variety of LPV systems, it is possible to isolate three main types of LPV
systems based on the dependence on the parameters:

1. Affine and multi-affine systems

2. Polynomial Systems

3. Rational systems

It is worth noting that every LPV systems can be brought back to one of these latter
types by mean of a suitable change of variable (e.g. ρ′1 ← eρ1).

1.2.1.1 Affine and Multi-Affine Systems

Affine and multi-affine systems are the most simple LPV systems that can be encountered.
Their general expression is given by

ẋ(t) = A(ρ)x(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + F (ρ)w(t)

(1.17)

where [
A(ρ) E(ρ)
C(ρ) F (ρ)

]
=
[
A0 E0

C0 F0

]
+

N∑

i=1

[
Ai Ei
Ci Fi

]
ρi (1.18)

Due to the affine dependence, stability of such systems can be determined with a low
degree of conservatism (in some cases there is no conservatism). This will be detailed further
in Section 1.3.2.

1.2.1.2 Polynomial Systems

Polynomial systems are the generalization of affine systems to a polynomial dependence with
respect to the parameters. Their general expression is given below:

ẋ(t) = A(ρ)x(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + F (ρ)w(t)

(1.19)

where [
A(ρ) E(ρ)
C(ρ) F (ρ)

]
=
[
A0 E0

C0 F0

]
+

N∑

i=1

[
Ai Ei
Ci Fi

]
ραi (1.20)

where αi =
[
α1
i . . . αNi

]
and ραi = ρ

α1
i

1 ρ
α2

i
2 . . . ρ

αN
i
N .

Such systems are slightly more complicated to analyze, but recently, several approaches
brought interesting solutions to stability analysis and control synthesis for this kind of systems.
This will be detailed in Section 1.3.3.
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1.2.1.3 Rational Systems

Rational systems are the most complicated LPV systems that can be imagined and their
general expression is given hereunder

ẋ(t) = A(ρ)x(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + F (ρ)w(t)

(1.21)

where A(ρ), E(ρ), C(ρ) and F (ρ) are rationally polynomially parameter dependent matrices.
Such systems have the advantage to be able to model the largest set of systems and multi-

affine/polynomial systems are special case of this kind. Due to the rational dependence, they
are also the most complicated type of LPV systems to deal with. This will be detailed further.

1.2.2 But essentially three global frameworks

Even if a LPV system can be classified in several families depending on how the parameters
enter the system, only three global techniques are commonly used (at this time) to deal with
LPV systems.

1.2.2.1 Polytopic Formulation

Polytopic systems are really spread in robust analysis and robust control. They have been
studied in many papers (see for instance Apkarian and Tuan [1998], Borges and Peres [2006],
Geromel and Colaneri [2006], Jungers et al. [2007], Oliveira et al. [2007], Peaucelle et al. [2000]
for recent results on polytopic systems and references therein).

A time-varying polytopic system is a system governed by the following expressions

ẋ(t) = A(λ(t))x(t) + E(λ(t))w(t)
z(t) = C(λ(t))x(t) + F (λ(t))w(t)

(1.22)

where
[
A(λ) E(λ)
C(λ) F (λ)

]
=

N∑

i=1

λi(t)
[
Ai Ei
Ci Fi

]
(1.23)

and
∑N

i=1 λi(t) = 1, λi(t) ≥ 0.
The term polytopic comes from the fact that the vector λ(t) evolves over the unit simplex

(which is a polytope) defined by

Γ :=

{
col
i

(λi(t)) :
N∑

i=1

λi(t) = 1, λi(t) ≥ 0

}
(1.24)

This set is depicted on Figure 1.5 for values N = 2 and N = 3. For N = 2, the set takes
the form of a segment on a line; for N = 3, the set is a closed surface on a plane; and so on.
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Figure 1.5: Set Γ for N = 2 and N = 3

The polytope Γ can be defined uniquely from the set of vertices:

V =
N⋃

i=1

Vi (1.25)

where
Vi = col( 0, . . . , 0︸ ︷︷ ︸

i− 1 terms

, 1︸︷︷︸
ith term

, 0, . . . , 0︸ ︷︷ ︸
N − i terms

) (1.26)

Indeed, in this case, the convex hull of V, denoted hull[V] coincides with Γ. Recall that
the convex hull is the convex envelope of V and is the smallest convex set containing V. The
notion of convex hull is illustrated on Figure 1.6.

Figure 1.6: Convex hull of a set of points on the plane

Polytopic systems enjoy a nice property coming from the fact that a polytope is a convex
polyhedral and, as we will see later, the stability of a polytopic system can be characterized
in terms of stability of ’vertex’ systems.

It is important to note that each parameter dependent system of any type can be coarsely
turned into a polytopic system formulation. Affine and multi-affine systems can be equiva-
lently represented as polytopic systems, this is illustrated in the following example:
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Example 1.2.1 Let us consider the LPV system with two parameters ρ1, ρ2:

ẋ(t) = (A1ρ1(t) +A2ρ2(t))x(t) (1.27)

with ρi(t) ∈ [ρ−i , ρ
+
i ] for i = 1, 2. The corresponding equivalent polytopic system is then given

by
ẋ = [A1[(λ1 + λ3)ρ−1 + (λ2 + λ4)ρ+

1 ] +A2[(λ1 + λ2)ρ−2 + (λ3 + λ4)ρ+
2 ]]x (1.28)

with λ1(t) + λ2(t) + λ3(t) + λ4(t) = 1, λi(t) ≥ 0.

It is clear that the polytopic model is not interesting in this case since it involves 4
time-varying parameters instead of 2 for the original system. This is an obvious fact in multi-
affine systems. However, the transformation of the above multi-affine system into a polytopic
formulation allows to provide somewhat nonconservative stability conditions (depending on
the notion of stability which is considered); this will be detailed in Section 1.3.

On the other hand, the transformation of other LPV systems which are not multi-affine
may be interesting but remains conservative as demonstrated in the following example.

Example 1.2.2 Let us consider the polynomially parameter dependent system

ẋ(t) = (A0 +A1ρ+A2ρ
2)x(t) (1.29)

where ρ ∈ [ρ−, ρ+]. It can be converted into the polytopic system

ẋ(t) = [A0 +A1f1(λ(t)) +A2f2(λ(t))]x(t) (1.30)

with

f1(λ(t)) = (λ1(t) + λ3(t))ρ− + (λ2(t) + λ4(t))ρ+

f2(λ(t)) = λ3(t)(ρ−)2 + λ4(t)(ρ+)2

Indeed, we have considered
(
ρ
ρ2

)
= λ1

(
ρ−

0

)
+ λ2

(
ρ+

0

)
+ λ3

(
ρ−

(ρ−)2

)
+ λ4

(
ρ+

(ρ+)2

)
(1.31)

6

- ρ

ρ2

ρ− ρ+

Figure 1.7: Comparison between exact set of values (the parabola) and the approximate set
(the interior of the trapezoid)
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To see that systems (1.29) and (1.30) are not equivalent it suffices to show that the
polytopic parametrization can generate aberrant parameter values. This is easily visualized
on Figure 1.7, aberrant values lie inside the trapezoid but not on the parabola. Then dealing
with the polytopic systems would results in conservative stability conditions. The drawback
of polytopic system as approximants comes from the fact that they decorrelate parameters
and functions of them. Indeed, in the previous example, the dependence between ρ and ρ2 is
lost in the parametrization (1.31); only extremal points are correlated.

In order to reduce this conservatism, it is interesting to reduce the size of the polytope.
This can be done by adding new vertices in order to shape the non-convex dependence between
parameters. For the curve f(x) = x2 it is possible to add new points below the curve to
approximate the curve by tangent straight lines as seen on Figure 1.9. Nevertheless, it is not
possible to approximate (asymptotically) exactly the parameter set (ρ, ρ2). Indeed, since the
domain has to remain convex, the surface above the curve f(x) = x2 (the epigraph) must be
convex too, and thus cannot be reduced more.

ρ

ρ2

ρ+

6

-

+

Removed part

Figure 1.8: Illustration of Polytope Reduction using epigraph reduction

With the assumptions that ρ− = 0 and ρ+ > 0, the polytope can be reduced by removing
a part of the epigraph. The surface above the line joining the points (0, 0) and (ρ+, (ρ+)2)
can be removed. In this case the new domain is a triangle instead of a rectangle, as depicted
in Figure 1.8.

1.2.2.2 Parameter Dependent Formulation

This formulation is the most direct one, the system is considered in his primal form. The
stability analysis or control synthesis are performed directly with specific tools. This formu-
lation is better suited for polynomially parameter dependent systems but can be used with
any type of LPV systems:

ẋ(t) = A(ρ)x(t) (1.32)

where
A(ρ) = A0 +

∑

i

Aiρ
αi

with αi =
[
α1
i . . . αNi

]
and ραi = ρ

α1
i

1 ρ
α2

i
2 . . . ρ

αN
i
N .
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6

- ρ

ρ2

ρ− ρ+

Figure 1.9: Illustration of Polytope Reduction by straight lines

It is obvious that the multi-affine case is a special case of that more general formulation.
Moreover, even if the definition is given for systems with polynomial dependence on param-
eters only, it also applies to systems with rational dependence on parameters. However, a
more more suitable formulation for such systems is given in the next section.

1.2.2.3 ’LFT’ Formulation

The last formulation for LPV systems is called, with a slight abuse of language, ’LFT’ systems.
Indeed, the term ’LFT’ means ’Linear Fractional Transformation’ and is the transformation
used to convert a LPV/uncertain system into a Linear Fractional Form (LFR). The interest
of this formulation for LPV systems have been emphasized in [Packard, 1994] and has given
rise to many papers, let us mention for instance [Apkarian and Adams, 1998, Apkarian and
Gahinet, 1995, Scherer, 2001]. The major interest of such a formulation is to embed a large
variety of systems in a single class, englobing in a unified way systems with polynomial and
rational dependence on parameters.

The key idea of this representation is to split the system in two parts, the parameter-
varying and the constant part to analyze them separately. It is worth noting that the idea of
separating the system in two connected independent parts is not new. It actually brings us
back to the 50’s when the nonlinearities on the actuators were dealt with such a representation
and lead to Lu’re systems. In robust stability analysis, such a transformation is extensively
used as shown in [Scherer and Wieland, 2005, Zhou et al., 1996].

As an introductive example, let us consider the LPV system

ẋ(t) = A(ρ)x(t) (1.33)

which is rewritten into an interconnection of two systems

ẋ(t) = Ãx(t) +Bw(t)
z(t) = Cx(t) +Dw(t)
w(t) = Θ(ρ)z(t)

(1.34)

as depicted in figure 1.10. Note that the matrices of the lower system (Ã, B,C,D) are constant
while the parameter varying part is located in the upper system.
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�Θ(ρ)

H(s)-

z(t)w(t)

Figure 1.10: System (1.33) written in a ’LFT’ form corresponding to description (1.34) where
H(s) = C(sI − Ã)−1B +D

Example 1.2.3 Let us consider the LPV system

ẋ =
(

ρ2

ρ2
1 + 1

− 3
)
x (1.35)

It is possible to rewrite it in a ’LFT’ form as shown below



ẋ

z0

z1

z2


 =

[
Ã B

C D

]



x

w0

w1

w2


 (1.36)

with
[
Ã B

C D

]
=




−3 1 0 0
1 0 0 0
0 0 0 1
0 0 −1 0


 (1.37)

and 

w0

w1

w2


 =



ρ2 0 0
0 ρ1 0
0 0 ρ1





z0

z1

z2


 (1.38)

Once the LPV system is split in two parts, the stability of the system or any other property
can be determined using theorems applying on system interconnections; this will be detailed
in Section 1.3. Such an idea has been extensively developed in the literature to deal with
systems with nonlinearity leading to analysis of Lu’re Systems with sector/norm-bounded
nonlinearities.

The matrix Θ(ρ) is assumed, generally, to gather diagonally all the parameters involved
in the LPV model (as illustrated in Example 1.2.3):

Θ(ρ) = diag(In1 ⊗ ρ1, . . . , Inp ⊗ ρp) (1.39)

where ni is the number of occurrences of parameter ρi in Θ(ρ). Each parameter is repeated
enough times as needed to turn system (1.33) into system (1.34). A complete discussion on
the construction of the interconnection is given in [Scherer and Wieland, 2005, Zhou et al.,
1996].
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It is generally assumed, for simplicity, that Θ(ρ)TΘ(t) ≤ I (or equivalently ||Θ(ρ)||L∞ ≤ 1)
meaning that the parameters ρ belong to the hypercube [−1, 1]p where p is the number of
parameters. It is worth noting that, by a simple change of variable, every real parameter can
be modified to belong to the interval [−1, 1].

To emphasize the correspondence between both systems, we will turn the LFT formulation
into a ’one-block’ formulation.

From (1.34), we have
w(t) = Θ(ρ)z(t)

= Θ(ρ)(Cx(t) +Dw(t))
(1.40)

and then
(I −Θ(ρ)D)w(t) = Θ(ρ)Cx(t) (1.41)

If the problem is well-posed (i.e. the matrix I −Θ(ρ)D is nonsingular for all ρ ∈ [−1, 1]p)
then we get

w(t) = (I −Θ(ρ)D)−1Θ(ρ)Cx(t) (1.42)

and finally
ẋ(t) = (Ã+B(I −Θ(ρ)D)−1Θ(ρ)C)x(t) (1.43)

showing that we have

A(ρ) = Ã+B(I −Θ(ρ)D)−1Θ(ρ)C
= Ã+BΘ(ρ)(I −DΘ(ρ))−1C

(1.44)

Example 1.2.4 We will show here the equivalence between system (1.35) and (1.36)-(1.38).
Applying formula A(ρ) = Ã+B(I −Θ(ρ)D)−1Θ(ρ)C yields

A(ρ) = −3 +




1
0
0






1 0 0
0 1 −ρ1

0 ρ1 1



−1 

ρ2

0
0




= −3 +
1

1 + ρ2
1




1
0
0






1 0 0
0 1 ρ1

0 −ρ1 1





ρ2

0
0




= −3 +
ρ2

ρ2
1 + 1

1.3 Stability of LPV Systems

Three frameworks have been introduced in the latter section which cover the wide variety of
LPV systems: affine, polynomial and rational systems. These past years, specific tools have
been developed to deal with stability analysis of systems belonging to each class and have
lead to interesting results. The aim of the current section is to present these tools and their
most important associated results, but first of all, some preliminary results on stability of
LPV systems are necessary.
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1.3.1 Notions of stability for LPV systems

It is convenient, for the reader ease, to introduce several notions of stability of LPV systems.
Since LPV system are defined over a (smooth) continuum of systems, hence the stability may
take several forms at the difference of LTI systems. For more details on stability of dynamical
systems, the reader should read Appendix B.4. This section is devoted to show the complexity
of the stability analysis of LPV systems and introduces ad-hoc notions of stability for this
type of systems.

Before giving specific definitions of stability for LPV systems, it is convenient to introduce
two fundamental definitions of stability for uncertain systems. These definitions are also of
interest in the framework of LPV systems. In modern system and control theory, the stability
of a dynamical system is determined by mean of a Lyapunov function and which has given
rise to Lyapunov’s theory [Lyapunov, 1992]. The key idea behind this theory is that if it
is possible to find a nonnegative function, measuring the energy contained into the system,
which is decreasing over time, then the system is said to be stable. This is explained more in
details in Appendices B.4 and B.5.

The notions of stability and Lyapunov function are illustrated in the following

Example 1.3.1 Let us consider an asymptotically stable LTI system (i.e. A has all its eigen-
values with negative real part)

ẋ(t) = Ax(t), x(0) = x0

From the assumption on A, it is clear that the system is stable (even exponentially stable)
since the explicit solution of the latter system is

x(t) = eAtx0

and converges to 0 as t grows to +∞.
A Lyapunov function for such system is given by

V (x(t)) = x(t)TPx(t), P = P T � 0 (1.45)

It is clear that the function is positive except at x = 0 where it is 0. Computing the time
derivative of V along the trajectories solution of the system yields

V̇ = ẋ(t)TPx(t) + x(t)TPẋ(t)
= x(t)T

(
ATP + PA

)
x(t)

Since the derivative needs to be negative definite for every x 6= 0, then we must have

ATP + PA ≺ 0, P = P T � 0

Finally, if one can find P = P T � 0 such that ATP+PA ≺ 0 then the system is asymptotically
stable. An explicit solution to such an inequality is provided in Appendix D.3. For instance,

if A =
[
−1 0
1 −1

]
and P =

[
p1 p2

p2 p3

]
� 0 then we have

ATP + PA =
[

2(p2 − p1) −2p2 + p3

? −2p3

]
≺ 0
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This is equivalent to satisfying the following nonlinear system of matrix inequalities (a sym-
metric matrix is positive definite if and only if all its principal minors are positive):

p1 > 0
p3 > 0

p1p3 − p2
2 > 0

p1 − p2 > 0
4p3(p2 − p1)− (p3 − 2p2)2 > 0

A suitable choice is given by

p1 = 3
p2 = 2
p3 = 2

In the framework of uncertain systems, the matrix A depends on uncertain terms δ and
is then denoted by A(δ). These uncertain terms may be either constant or time-varying. Let
us focus now, for simplicity, on constant uncertain parameters taking values in a compact set
∆ ⊂ Rn and the uncertain system

ẋ(t) = A(δ)x(t), x(0) = x0 (1.46)

where x and x0 are respectively the state and the initial condition.

Remark 1.3.2 We also assume that x = 0 is an equilibrium point for all δ ∈ ∆. This
assumption is fundamental to apply Lyapunov theory and is responsible of many errors in
published paper on stability of nonlinear uncertain systems. When the equilibrium point is
nonzero and depends on the value of the uncertain parameters, the following change of variable

x̃(t) = x(t)− xe(δ)

transfers the equilibrium point to 0. It is worth noting that this remark does not hold for
linear systems which always have an equilibrium point at the origin [Vidyasagar, 1993].

It has been shown that the stability of the system can be determined in two different ways.
Each one of them leads to a specific stability notion: the quadratic and robust stability.

Definition 1.3.3 System (1.46) is said to be quadratically stable if there exists a Lyapunov
function Vq(x(t)) = x(t)TPx(t) > 0 for every x 6= 0 and V (0) = 0 such that

V̇q(t, δ) = x(t)T (A(δ)TP + PA(δ))x(t) < 0

for every x 6= 0 and V̇q(0, δ) = 0 for all δ ∈∆.

Definition 1.3.4 System (1.46) is said to be robustly stable if there exists a parameter de-
pendent Lyapunov function Vr(x(t), δ) = x(t)TP (δ)x(t) > 0 for every x 6= 0 and V (0) = 0
such that

V̇r(t, δ) = x(t)T (A(δ)TP (δ) + P (δ)A(δ))x(t) < 0

for every x 6= 0 and V̇r(0, δ) = 0 for all δ ∈∆.
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Since the Lyapunov function used to determine robust stability depends on the uncertain
constant parameters, it is clear that the robust stability implies quadratic stability. The
converse does not hold necessary, indeed it may be possible to find uncertain systems which
are robustly stable but not quadratically. The following example illustrates this claim.

Example 1.3.5 Let us consider the uncertain system with constant uncertainty δ ∈ [−1,−1/2]∪
[1/2, 1]:

ẋ = A(δ, τ)x (1.47)

where A(δ, τ) =
[

1 δ
−(τ + 2)/δ −(τ − 1)

]
where τ > 0 is a known system parameter.

The characteristic polynomial of the system is given by s2+τs+1 and shows that the eigen-
values of the system do not depend on the uncertain parameter δ. Moreover, the eigenvalues
have strictly negative real since τ > 0 and proves that the system is robustly asymptotically
stable for constant uncertainty δ. We aim at showing now that the system is not quadratically
stable using reductio ad absurdum. Assume that the system is quadratically stable then there

exists a matrix P =
[
p1 p2

p2 p3

]
� 0 such that the LMI

Lq(δ) := A(δ)TP + PA(δ) ≺ 0

=

[
2p1 − 2

τ + 2
δ

p2 p2 −
τ + 2
δ

p3 + p1δ − p2(τ + 1)

? 2δp2 − 2p3(τ + 1)

]
≺ 0

(1.48)

holds for all δ ∈ [−1,−1/2] ∪ [1/2, 1]. Since the latter LMI is satisfied for every admissible
value of δ then we have Lq(−δ0) ≺ 0 and Lq(δ0) ≺ 0 for every given δ0 ∈ [−1,−1/2]∪ [1/2, 1].
This implies that the inequality given by their sum Lq(−δ0)+Lq(δ0) ≺ 0 also holds. Computing
the sum explicitly yields

Lq(−δ0) + Lq(δ0) = [A(−δ0) +A(δ0)]TP + P [A(−δ0) +A(δ0)]

=
[

4p1 −τp2

−τp2 −4(τ + 1)p3

]
(1.49)

The sum is not negative definite since p1 > 0 by definition, yielding a contradiction, showing
that the system (1.47) is not quadratically stable.

Let us consider now a parameter dependent Lyapunov matrix

P (δ) = P0 + P1δ + P2δ
2 =

[
p1(δ) p2(δ)
p2(δ) p3(δ)

]

It is relatively tough to show analytically that such a matrix allows to prove robust stability
of system (1.47). However, we will show that the contradiction does not occur with such a
Lyapunov matrix P (δ). Let Lr(δ) = A(δ)TP (δ) + P (δ)A(δ) and compute

Lr(δ0) + Lr(−δ0) =
[

2(p1(δ0) + p1(−δ0)) ∗
∗ ∗

]

=
[

4(p2
1δ

2
0 + p0

1) ∗
∗ ∗

] (1.50)

with pi(δ) = p2
i δ

2 + p1
i δ + p0

i . This LMI is feasible since the only constraint is p1(δ) > 0 for
all δ ∈ [−1,−1/2] ∪ [1/2, 1] which allows p2

1δ
2
0 + p0

1 to take negative values.
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Numerical experiment with τ = 2 shows that a suitable choice for P (δ) is given by

P (δ) =
[

2.9218 −0.0017
−0.0017 0.0293

]
+
[

0.0157 1.1383
1.1383 0.0005

]
δ +

[
0.0857 0.0087
0.0087 0.7601

]
δ2 (1.51)

Proposition 1.3.6 Quadratic stability implies robust stability and quadratic stability is a
sufficient condition to stability.

Proof : The see that quadratic stability implies robust stability, it suffices to let Pi = P̄ and
quadratic stability is then a particular case of robust stability where all the matrices Pi are
identical. Quadratic stability is a sufficient condition for stability since the Lyapunov function
V (x) = xTPx is the most simple one that can be used to determine stability. Thus is stability
is ensured for a simple Lyapunov function then it will also ensured using more complex ones.
�

If the uncertainties were time-varying, the quadratic stability would check the stability
for unbounded parameter variation rates while the robust stability would consider bounded
parameter variation rates. Indeed, the Lyapunov function derivative becomes in this case

V̇ = x(t)T
(
A(δ)TP (δ) + P (δ)A(δ) +

N∑

i=1

˙
δi
∂P (δ)
∂δi

)
x(t)

This illustrates the fact that even if an uncertain system with time-varying uncertainties is
stable for each frozen uncertainty, the derivative of the Lyapunov function may not be negative
definite for some values of δ and δ̇. This shows the importance of the rate of variation of
the uncertainties in the stability of the system. This will be detailed a bit further in the
discussion but is convenient to introduce here the following remak.

Remark 1.3.7 In the case of uncertainties with infinite variation rates, robust stability can-
not be defined. Indeed, suppose that robust stability is sought for such systems through a
parameter dependent Lyapunov function of the form V (x, δ) = xTP (δ)x. Due to the affine
dependence of the Lyapunov function derivative V (x, δ, δ̇) on the term δ̇ (with a slight abuse
of language since δ is not differentiable at some points), it is possible to consider only ex-
tremal values (the bounds) of the polytope in which ρ̇ evolves. Since the uncertainties have
unbounded parameter variation rate, then the polytope is the whole space RN including infinity.

This implies that the term
∂P (δ)
∂δ

δ̇ may reach an infinite value, making the stability condition

unfeasible. The only way to make the matrix inequality feasible again is to fix
∂P (δ)
∂δ

= 0 but

this means that the Lyapunov function is independent of δ and thus reduces to P (δ) = P0.
Finally, the Lyapunov function becomes a Lyapunov function for quadratic stability. This
shows that only quadratic stability can be verified for systems with arbitrarily fast parameter
variation rate by considering a Lyapunov function smoothly scheduled by parameters. On the
other hand, it seems possible to define the following Lyapunov function

V (x) = max
i
{x(t)TPix(t)} > 0

with Pi = P Ti in order to improve results of quadratic stability for such systems and obtain
results similar to robust stability.
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In the framework of stability analysis of LPV systems, the exact trajectories of the param-
eters are unknown in advance, only the set of values (and sometimes other properties such as
their rate of variation) is known. Hence, in stability analysis framework, LPV and uncertain
systems appear to be equivalent and thus, it seems correct to apply tools of robust stability
to LPV systems. On the other hand, due to the specific nature of LPV systems, more specific
notions of stability should be considered. They are introduced in what follows.

Let us consider now the LPV system

ẋ(t) = A(ρ)x(t) (1.52)

where x ∈ X ∈ X and ρ ∈ Uρ are respectively the system state and the parameters. It
is assumed here that the parameters have bounded derivatives. Since the stability of LPV
systems depends on the parameters values, a specific terminology is introduced.

Definition 1.3.8 System (1.52) is said to be locally parametrically exponentially stable at
ρ0 ∈ Uρ if and only if it is exponentially stable at frozen parameter value ρ0 ∈ Uρ (i.e. all the
eigenvalues of A(ρ0) have strictly negative real part for all ρ0 ∈ Uρ).

A common misconception is to say that if a LPV system is locally parametrically exponen-
tially stable at every frozen ρ0 ∈ Uρ, then it is uniformly globally parametrically exponentially
stable. But this statement contains imprecisions. First of all, the term stability should be
defined precisely as in the framework of uncertain systems: are we talking about robust or
quadratic stability ? Secondly, the time-varying nature of the system is not considered while
dealing with frozen systems only.

Definition 1.3.9 System (1.52) is said to be quadratically globally parametrically exponen-
tially stable at ρ0 ∈ Uρ if and only if it is locally parametrically exponentially stable at every
frozen parameter ρ0 ∈ Uρ (i.e. all the eigenvalues of A(ρ0) have strictly negative real part for
all ρ0 ∈ Uρ).

In this case no information of the rate of variation of the parameters is considered and
thus arbitrarily fast variations of the parameters are allowed (unbounded derivatives). This
obviously results in a conservative stability condition while considering systems with bounded
parameter variation rates. This is completed by the following definition.

Definition 1.3.10 System (1.52) is said to be robustly globally parametrically exponentially
stable at ρ0 ∈ Uρ if and only if it is locally parametrically exponentially stable at every frozen
parameter value ρ0 ∈ Uρ (i.e. all the eigenvalues of A(ρ0) have strictly negative real part for
all ρ0 ∈ Uρ) and for all ρ̇ ∈ Uν ⊂ Rn.

The robust stability considers rate of variations of the parameters and thus reduces the
conservatism of the quadratic stability.

Remark 1.3.11 Note that uniform stability (in the Lyapunov sense) is implied by uni-
form global parametric stability (see Appendix B.36 for different notions of stability of time-
invariant dynamical systems). Moreover, the asymptotic stability and exponential stability
coincides for linear dynamical systems.
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We have shown that if the LPV system is stable for every frozen parameters, the system
could be globally parametrically stable. However, the rate of variation of parameters plays
an important role here and we aim at showing now, that the global parametric stability holds
provided that the rate of variation is sufficiently small. This is illustrated in the following
example:

Example 1.3.12 Let us consider LPV system

ẋ = A(ρ)x (1.53)

where

A(ρ) =




7 12 cos(ρ) sin(ρ)
6 10 − sin(ρ) cos(ρ)

τ(γ + 7) cos(ρ)− 6τ sin(ρ) 12τ cos(ρ)− (γ + 10) sin(ρ) −τ 0
τ(γ + 7) sin(ρ) + 6τ cos(ρ) 12τ sin(ρ) + τ(10 + γ) cos(ρ) 0 −τ




For τ ≥ 17.1169 and γ > 0, the matrix A(ρ) has negative eigenvalues for all ρ ∈ [−π, π]. For
similar reasons as for system in Example 1.3.5, the system is not quadratically stable (i.e. the

sum of the right-upper block for ρ = −π and ρ = π is a zero matrix and the matrix
[

7 12
6 10

]

is unstable). If ρ is constant then the system is robustly stable, while if ρ is allowed to vary
arbitrarily fast, the system is not asymptotically stable (since quadratic stability is equivalent
to stability with unbounded parameter variation rate). From these considerations it seems that
the parameter variation rate plays a role in the stability of the LPV system.

Let us consider a parameter dependent Lyapunov function of the form V (x, ρ) = xTP (ρ)x
where P (ρ) = P0 +P1 cos(ρ) +P2 sin(ρ) +P3 cos(ρ)2 +P4 sin(ρ)2 and for which the parameter
ρ satisfies ρ ∈ [−π, π], |ρ̇| ≤ ν. A LMI test is performed in order to find the admissible bound
ν with respect to τ such that the system is asymptotically stable. The results are depicted on
Figure 1.11.
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Figure 1.11: Evolution of the derivative bound ν with respect to τ that ensures stability

A best fit approach conjectures that ν ∼ −0.0198τ2 + 1.7402τ − 24.3626. To interpret the
latter result, first note that matrix A(ρ) can be rewritten as:

A(ρ) =




7 12 cos(ρ) sin(ρ)
6 10 − sin(ρ) cos(ρ)
0 0 −τ 0
0 0 0 −τ


+




0 0
0 0
τ 0
0 τ


K(ρ)

with K(ρ) =
[
τ(γ + 7) cos(ρ)− 6τ sin(ρ) 12τ cos(ρ)− (γ + 10) sin(ρ) 0 0
τ(γ + 7) sin(ρ) + 6τ cos(ρ) 12τ sin(ρ) + τ(10 + γ) cos(ρ) 0 0

]
.

Above, the terms K(ρ) and τ play respectively the role of a parameter-dependent state-
feedback gain and the bandwidth of the actuators. By transposition of the preceding analysis
to stabilization, it is clear that it is not possible to find K(ρ) such that the closed-loop is
quadratically stabilizable. On the other hand, it is possible to find K(ρ) such that the system
is asymptotically stable provided that ν is sufficiently small (robust stability). From Figure
1.11, we can see that the larger the bandwidth of the actuator τ is, the larger the allowed
bound on parameter derivative ν is.

According to [Wu et al., 1996], the reason for which the system is not quadratically stable
is the particular parameter trajectories that allow to the right-upper block to switch arbitrarily
fast between values I and −I. So regardless of the bandwidth τ of the actuators, the rapidly
varying parameter ρ do not allow for parameter-dependent quadratic stabilization.

The difference between stability for unbounded (quadratic stability) and bounded (robust
stability) parameter variation rate has been emphasized in the preceding example. It is impor-
tant to note that, for the moment, only values of the parameters and bounds on parameters
derivative have been considered to study LPV systems stability. The remaining part extends
the discussion when the system matrix A(ρ) is unstable for some parameter values. We will
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show that under some (sometimes strong) assumptions, the LPV system may be globally
parametrically asymptotically stable even in presence of local parametric instability. This is
done by considering additional properties on trajectories of the parameters.

Definition 1.3.13 If there exists a (possibly infinite) countable family of vectors ρi for which
the system is parametrically locally unstable (i.e. at least one of the eigenvalues of A(ρi) has
zero real part), then system (1.52) is said to be exponentially stable almost everywhere.

The latter definition has important consequences in the uniform global parametric stabil-
ity. Indeed, the uniform global parametric stability is ensured if the parameter values belong
to the set of U◦ρ := Uρ − Ūρ where Ūρ is a countable set of parameter vectors for which the
system is unstable. It follows that the set U◦ρ is not convex anymore and thus results based
on the convexity are not applicable (see for instance Section 1.2.2.1).

While considering these systems, it is clear that the exponential stability depends on the
parameter trajectories (and not only their values). If the trajectories avoid parameters in
Ūρ then the system would be uniformly exponentially parametrically stable over U◦ρ . On the
other hand, if the trajectory stops on an unstable parameter values then the system becomes
unstable. This is illustrates on Figure 1.12.

Figure 1.12: Example of trajectories for which the system is unstable (upper trajectory) and
exponentially stable (lower trajectories) provided that the trajectories cross singular points
sufficiently ’quick’

It is worth noting here that, if for a particular parameter vector ρ0, the system is unstable
(at least one of the eigenvalues of A(ρ0) has strictly positive real part) then the family contains
an infinite, but not countable, number of parameter vectors for which the system is unstable
(see Figure 1.13). This is a consequence of the smooth dependence of the system on the
parameters; and the continuity of the eigenvalues of a parameter dependent matrix with
respect to these parameters. A necessary condition to system stability would be that the
parameter trajectories remain in stable regions but this contradicts the definition of the
parameters which are assumed to evolve over the complete domain. Finally, we arrive at the
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conclusion that the stability of the system depends on the values of the parameters and on
the behavior of the parameters. If the parameters just cross or avoid the singular (unstable)
parameter values, then the system would be exponentially stable. But if one of the parameter
remains at a singular value permanently, then the system would have a unstable behavior.
This brought us to the following idea: if one can characterize the mean duration of the
instability then it is possible to characterize global parametric stability of the system. This
has been shown in [Hespanha and Morse, 1999] for switched system and generalized to LPV
systems in [Hespanha et al., 2001, Mohammadpour and Grigoriadis, 2007b].

Let us denote now Ūρ the set (with nonzero measure) of parameter vectors for which the
system is unstable. An example of such a set is depicted on Figure 1.13.

Figure 1.13: Example of stability map of a LPV system with two parameters; the grey regions
are unstable regions

Introduce the characteristic measure δ(α) of the set Ūρ such that

δ(α) =
{

1 if α ∈ Ūρ
0 if α ∈ Uρ − Ūρ (1.54)

and the quantity

Tp(τ, t) =
∫ t

τ
δu(ρ(t))dt (1.55)

The quantity Tp(τ, t) measures the time spent by the system to be unstable over the
interval [τ, t]. This leads to the following definition (see [Hespanha et al., 2001, Hespanha and
Morse, 1999]):
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Definition 1.3.14 It is said that system (1.52) has brief instabilities if

Tp(τ, t) ≤ T0 + α(t− τ), ∀ t ≥ τ ≥ 0 (1.56)

for some T0 ≥ 0, α ∈ [0, 1]. In this case, the scalar T0 is called the instability bound and α
the exponential instability ratio.

The instability ratio α plays a central role in the stability analysis for LPV/swicthed
systems with brief instabilities. It allows to give an upper bound on the measure, in an
average fashion, of the time spent by the system being unstable.

This leads to the following result:

Theorem 1.3.15 Let $ > 0 and β > 0 be decay rates of respectively the stable and unstable
system:

x(t)e$tx(0)→ 0 as t→ +∞ for each frozen ρ ∈ Uρ − Ūρ
x(t)e−βtx(0)→ 0 as t→ +∞ for each frozen ρ ∈ Ūρ (1.57)

In this case the system is said to be ($,β)-uniformly globally parametrically exponentially
stable if α < α∗ =

$

$ + β
with decay rate −$ + α(β +$).

Proof : A sketch is given here and a more complete one can be found in [Hespanha et al.,
2001, Hespanha and Morse, 1999] in the framework of switched systems. This has been
extended to LPV systems in [Mohammadpour and Grigoriadis, 2007b] and the following proof
is inspired by the latter paper.

Let V be a Lyapunov function for such a system defined by V (x(t)) = x(t)TPe2ηtx(t)
where η = −β if ρ ∈ Ūρ and η = $ if ρ ∈ Uρ − Ūρ.

Computing the derivative it is possible to show that under certain LMI conditions, we have

V̇ =
{
−2$V if ρ ∈ Ūρ
2βV if ρ ∈ Uρ − Ūρ (1.58)

Solving the linear differential inequality we get

V (x(t)) ≤ e−2(t−τ−Tp(τ,t))$+2βTp(τ,t)V (x(τ)) (1.59)

The latter inequality must be non increasing over [τ, t] hence the factor of the term t−τ in
the argument of the exponential must be nonpositive and thus this leads to, for every t > τ ≥ 0:

−2(t− τ − Tp(τ, t))$ + 2βTp(τ, t) < 0
⇒ −$(t− τ) + (β +$)Tp(τ, t) < 0
⇒ −$(t− τ) + (β +$)(T0 + α(t− τ)) < 0 using (1.56)

(1.60)

Note that the term T0 does not factor the term t− τ , hence it does not affect the decay rate of
V over [τ, t]. It only acts on an eventual overshoot of V . Finally the exponential convergence
to 0 of V is guaranteed, under the assumption that (1.56) is satisfied, if

−$ + α(β +$) < 0 (1.61)

which is equivalent to α <
$

β +$
. This concludes the proof. �
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This latter result, initially provided for switched systems and extended here for LPV sys-
tems, shows that while considering additional information on parameters behavior, a system
which is locally parametrically unstable may be ($,β)-uniformly exponentially stable.

After this brief presentation of different forms of stability of LPV systems, some results
on their representation and associated tools are provided. If not stated otherwise, in the
following, by ’stability’ we tacitly means to ($, 0)-uniform global parametric exponential
stability. Moreover signals x ∈ X , u ∈ U , w ∈ W, z ∈ Z and y ∈ Y denote respectively the
system state, the control input, the disturbances, the controlled/performances outputs and
the measured outputs.

1.3.2 Stability of Polytopic Systems

This section is devoted to the stability analysis of LPV polytopic systems. Quadratic and
Robust stability are discussed and compared in the polytopic systems framework. In what
follows, the following polytopic LPV system is considered

ẋ(t) =
N∑

i=1

λi(t)Aix(t), x(0) = x0 (1.62)

where x is the system state and λ(t) ∈ Γ where

Γ :

{
N
col
i=1

(λi(t)) :
N∑

i=1

λi(t) = 1, λi(t) ≥ 0

}
(1.63)

A necessary and sufficient condition for robust stability is given below:

Proposition 1.3.16 The LPV polytopic system (1.62) is quadratically stable if and only if
there exists a matrix P = P T � 0 such that

ATi + PAi ≺ 0 (1.64)

holds for all i = 1, . . . , N .

Proof : Define the Lyapunov function V (x(t)) = x(t)TPx(t) with P = P T � 0. The time-
derivative of the Lyapunov functions computed along trajectories of system (1.22) with w ≡ 0
leads to

V̇ (x(t)) = x(t)T (A(λ(t))TP + PA(λ(t)))x(t)

The quadratic stability of the equilibrium point xeq = 0 of system (1.22) is proved if V̇ (x(t)) ≺
0 for every x 6= 0. This yields the following parameter dependent LMI

N∑

i=1

λi(t)
(
ATi P + PAi

)
≺ 0 (1.65)

for any λ ∈ Γ.
Sufficiency: Assume that ATi P + PAi ≺ 0 for all i = 1, . . . , N . Then it is obvious that

(1.65) holds.
Necessity: Since (1.65) must be true for every value of λ(t) ∈ Γ then it must be true at

every vertices Vi of the polytope and this implies

ATi P + PAi ≺ 0



30 CHAPTER 1. OVERVIEW OF LPV SYSTEMS

for all i = 1, . . . , N . �
An interesting fact of the previous result is the transformation of the parameter dependent

LMI (1.65) into a set of N LMIs. In other words, a semi-infinite dimensional problem is
reduced to a finite dimensional problem (sometimes huge) independent of the parameters
vector λ(t).

Example 1.3.17 In Example 1.2.1, the multi-affine system

ẋ(t) = (A1ρ1(t) +A2ρ2(t))x(t)

is turned in a polytopic formulation

ẋ = [A1[(λ1 + λ3)ρ−1 + (λ2 + λ4)ρ+
1 ] +A2[(λ1 + λ2)ρ−2 + (λ3 + λ4)ρ+

2 ]]x (1.66)

with λ1(t) + λ2(t) + λ3(t) + λ4(t) = 1, λi(t) ≥ 0.
From this formulation, quadratic stability is ensured if and only if there exists a matrix

P = P T � 0 such that the set of 4 LMIs is satisfied

(A1ρ
−
1 +A2ρ

−
2 )TP + P (A1ρ

−
1 +A2ρ

−
2 ) ≺ 0

(A1ρ
+
1 +A2ρ

−
2 )TP + P (A1ρ

+
1 +A2ρ

−
2 ) ≺ 0

(A1ρ
−
1 +A2ρ

+
2 )TP + P (A1ρ

−
1 +A2ρ

+
2 ) ≺ 0

(A1ρ
+
1 +A2ρ

+
2 )TP + P (A1ρ

+
1 +A2ρ

+
2 ) ≺ 0

(1.67)

A necessary and sufficient condition to quadratic stability of the multi-affine system is ensured
if the stability of the system at each vertex of the hypercube [ρ−1 , ρ

+
1 ]× [ρ−2 , ρ

+
2 ] is ensured using

an unique Lyapunov function. The exactness of the procedure is a consequence of the fact that
an hypercube is also a convex polyhedral and every convex polyhedral can be parametrized over
Γ.

Example 1.3.18 Let us consider again example 1.2.2 where a LPV system with quadratic
dependence on a parameter is turned, in a nonequivalent polytopic description recalled below:

ẋ(t) = [A0 +A1[(λ1(t) + λ3(t))ρ− + (λ2(t) + λ4(t))ρ+] +A2[λ3(t)(ρ−)2 + λ4(t)(ρ+)2]]x(t)

with
∑4

i=1 λi(t) = 1, λi(t) ≥ 0. A sufficient condition to stability of such system is hence
given by the feasibility of the set of 4 LMIs

(A0 +A1ρ
−)TP + P (A0 +A1ρ

−) ≺ 0
(A0 +A1ρ

− +A2(ρ−)2)TP + P (A0 +A1ρ
− +A2(ρ−)2) ≺ 0

(A0 +A1ρ
+)TP + P (A0 +A1ρ

+) ≺ 0
(A0 +A1ρ

+ +A2(ρ)+)TP + P (A0 +A1ρ
+ +A2(ρ)+) ≺ 0

(1.68)

As suggested in the proof and illustrated in the examples above, a necessary and sufficient
condition to quadratic stability (or sufficient condition to stability) of (1.65) is the stability
of all Ai (Ai have eigenvalues with strictly negative real part for all i = 1, . . . , N). The
main difficulty comes from the fact that, even if all the matrices Ai are Hurwitz, a matrix P
satisfying the LMIs may not exist. The robust stability overcomes this problem.
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Proposition 1.3.19 The LPV polytopic system (1.62) is robustly stable if there exists ma-
trices Pi = P Ti � 0, a matrix X and a sufficiently large scalar σ > 0 such that



−(X +XT ) Pi +XTAi XT

? −σPi + Pλ̇(t) 0
? ? −Pi/σ


 ≺ 0 (1.69)

holds for all i = 1, . . . , N and all λ̇ ∈ S where P :=
∂P (λ)
∂λ

=
[
P1 P2 . . . PN

]
.

For simplicity, the set S is not detailed here but represents the set in which evolves the
derivative of λ(t). More details are provided in Section 3.4.

Proof : The proof is made in three steps, the first step is to provide a relevant parame-
ter dependent Lyapunov function and differentiate it. The second part aims at showing the
equivalence between two matrix inequalities in order to linearize the dependence on parame-
ters. Finally, the last step turns a parameter dependent matrix inequality into a set of matrix
inequalities independent of the parameters.

Let us consider the parameter dependent Lyapunov function

V (x(t), λ(t)) = x(t)TP (λ(t))x(t)

where P (λ(t)) =
∑N

i=1 λi(t)Pi, Pi = P Ti � 0. We also assume here that the parameter λ(t) is
differentiable and, in this case, the derivative of V along the trajectories solutions of system
(1.62) is given by

V̇ (x(t), λ(t), λ̇(t)) = x(t)
(
A(λ(t))TP (λ(t)) + P (λ(t))A(λ(t)) + Pλ̇(t)

)
x(t) (1.70)

where A(λ(t)) =
∑N

i=1 λi(t)Ai. Since V̇ (·, ·, ·) must be negative definite for all x ∈ Rn, λ ∈ Γ
and λ̇ ∈ S we must have

A(λ(t))TP (λ(t)) + P (λ(t))A(λ(t)) + Pλ̇(t) ≺ 0 (1.71)

The idea would be to use the same proof as for quadratic stability to provide a sufficient
condition for robust stability. However, the arguments of the proof work if only if the depen-
dence on the parameters is affine. Due to the product A(λ(t))TP (λ(t)) in LMI (1.71) the
dependence is not affine anymore but quadratic. The idea now is to turn LMI (1.71) into an
equivalent formulation where these quadratic terms are removed.

Let us consider the following LMI where X is a constant full matrix of appropriate di-
mensions 


−(X +XT ) P (λ) +XTA(λ)

? −σP (λ) + Pλ̇ 0
? ? −P (λ)/σ


 ≺ 0 (1.72)

We aim now at showing that LMI (1.72) and (1.71) are equivalent. Note that (1.72) can
be rewritten in the expanded form



0 P (λ) 0
? −σP (λ) + Pλ̇ 0
? ? −P (λ)/σ




︸ ︷︷ ︸
Ψ

+



I
0
0


XT

[
−I A(λ) I

]
+



−I

A(λ)T

I


X

[
I 0 0

]
≺ 0

(1.73)
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Since the matrix X is unconstrained (free) then the projection lemma applies (see Appendix
E.18). A basis of the null-space of U1 :=

[
−I A(λ) I

]
and U2 :=

[
I 0 0

]
are given

respectively by

Ker[U1] =



A(λ) I
I 0
I I


 Ker[U2] =




0 0
I 0
0 I




Finally the projection lemma yields the following two underlying LMIs

Ker[U1]TΨKer[U1] = Ker[U1]T




0 P (λ) 0
? −σP (λ) + Pλ̇ 0
? ? −P (λ)/σ


Ker[U1] ≺ 0

=
[
A(λ)TP (λ) + P (λ)A(λ) + σP (λ) + Pλ̇ P (λ)

? −P (λ)/σ

]
≺ 0

Ker[U2]TΨKer[U2] = Ker[U2]T




0 P (λ) 0
? −σP (λ) + Pλ̇ 0
? ? −P (λ)/σ


Ker[U2] ≺ 0

=
[
−σP (λ) + Pλ̇ 0

? −P (λ)/σ

]
≺ 0

(1.74)
A Schur complement on the first LMI yields

A(λ)TP (λ) + P (λ)A(λ) + Pλ̇ ≺ 0

which is identical to (1.71). The second LMI is satisfied if and only if −σP (λ) + Pλ̇ ≺ 0
and this inequality is verified if σ is sufficiently large. This means that (1.72) and (1.71)
are equivalent. The final part of the proof is the transformation of the parameter dependent
matrix inequality (1.72) into a set of N matrix inequalities (1.69). This is done in the same
way than for quadratic stability. �

It is worth noting here that condition (1.69) is not a LMI condition due to the unknown
scalar term σ > 0. Nevertheless, if σ is fixed, the condition becomes a LMI. Moreover, σ is
not completely unknown since it must be sufficiently large. In this case, it suffices to fix it to
a very large value and then solve the LMIs.

Note also that in the case of constant λ, the term Pλ̇ is 0 and hence a suitable and simple
choice for σ is 1.

Remark 1.3.20 The principle of the polytopic formulation is based on the fact that the sys-
tem and stability conditions (here in a LMI form) have affine dependence on the parameters.
If, for some reason, the affine dependence is lost the stability of the system is not equivalent
(or even implied only) to the feasibility of the LMI at each vertex. In [Apkarian and Tuan,
1998, Jungers et al., 2007, Oliveira et al., 2007] some results are provided for which the de-
pendence is lost and some sufficient conditions are expressed to relax the parameter dependent
LMI conditions. This is also introduced in Section 3.2.

In terms of computational complexity, let us consider that a system has p parameters,
hence the number of LMIs to be solved simultaneously is then given by #(LMIs) = 2p. This
can be very time and memory consuming for some applications.
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1.3.3 Stability of Polynomially Parameter Dependent Systems

The most simple and intuitive description of polynomially parameter dependent systems or
systems with polynomial of functions of parameters (e.g. cos(ρ), eρ . . . ) is to deal directly
with a primal formulation:

ẋ(t) = A(ρ(t))x(t), x(0) = x0, ρ ∈ Uρ & RN (1.75)

as done in Section 1.3.1. In order to avoid repetition on stability of such systems, we will
focus on how to express stability conditions and how solving them. The reader should refer
to Section 1.3.1 to get preliminary results. We only recall here LMIs used to define quadratic
(rate-independent) and robust (rate dependent) stability and then a discussion is provided
on relaxation techniques.

Lemma 1.3.21 System (1.75) is quadratically stable if and only if there exists a matrix
P = P T � 0 such that

A(ρ)TP + PA(ρ) ≺ 0 (1.76)

holds for all ρ ∈ Uρ.

Proof : The proof is an application of the Lyapunov stability theory with V (x) = xTPx as
a Lyapunov function. �

Lemma 1.3.22 System (1.75) is robustly stable if and only if there exists a continuously
differentiable matrix function P (ρ) = P (ρ)T � 0 such that

A(ρ)TP (ρ) + P (ρ)A(ρ) +
N∑

i=1

νi
∂P (ρ)
∂ρi

≺ 0 (1.77)

holds for all ρ ∈ Uρ and all ν = colNi=1(νi) ∈ Uν where Uν is the set of vertices of the polytope
in which the derivative of the parameters ρ̇ evolves.

Proof : The proof is an application of the Lyapunov stability theory with V (x, ρ) = xTP (ρ)x
as a Lyapunov function. After differentiation, the term ρ̇ enters affinely in the LMI and hence
a polytopic formulation is equivalent. Hence it suffices to considers the vertices of the polytope
only to consider all the values of derivative of the parameters inside. �

The LMI for quadratic stability is technically called semi-infinite dimensional LMI due
to the dependence on parameters. Indeed, a continuum of LMIs is parametrized by ρ. This
means that it must be satisfied for all ρ ∈ Uρ and the verification of such a LMI constraint is
a challenging problem due to the infinite number of values of ρ.

The LMIs for robust stability is technically called infinite dimensional semi-infinite LMI.
The term ’infinite dimensional’ comes from the fact that the unknown variable P (ρ) to be
determined is a function (and thus belong to an infinite dimensional space) and the term
’semi-infinite’ comes from the fact that the LMI must be satisfied for all (ρ, ρ̇) ∈ Uρ × Uν .
Solving this LMI is also challenging to the matrix function P (ρ).

The remaining of this section aims at showing different relaxations schemes allowing to
turns these difficult LMI problems into more tractable LMI condition. Roughly speaking,
primal LMIs are relaxed into a set of finite number of finite dimensional LMIs which is easier
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to solve with convex optimization tools. First of all, a method to relax the infinite-dimensional
part into a finite dimensional problem is provided. It is based on a projection of a function on
a particular basis of functions. Second, methods to relax the semi-infinite part of the LMIs are
introduced. Some of these methods work for every parameter dependent LMIs independently
of the type of LPV system (affine, polynomial or rational). However, these (more or less)
recent results are rather complicated and remain technically difficult due to large theoretical
background. Nevertheless, they will be explained in broad strokes with a sufficient number
of references if precisions are wished. Three methods will be introduced: the relaxation by
discretization (or commonly called ’gridding’), the ’Sum-of-Squares’ approach and the global
polynomial optimization. They will be illustrated through examples and a discussion on
advantages and drawbacks will be provided.

1.3.3.1 Relaxation of matrix functions

The relaxation of the infinite dimensional part can be reduced to a finite dimensional problem
by projecting the function on a finite basis of function; for instance let us consider a polynomial
basis

fαi(ρ) = ραi , i = 1, . . . , Nb (1.78)

and therefore the matrix P (ρ) can be chosen as

P (ρ) =
Nb∑

i=1

Pifαi(ρ) (1.79)

where the matrices Pi = P Ti have to be determined. Therefore the robust stability conditions
becomes

Corollary 1.3.23 System (1.75) is robustly stable if and only if there exist matrices Pi = P Ti
such that such that LMIs

A(ρ)T
(∑Nb

i=1 Pifαi(ρ)
)

+
(∑Nb

i=1 Pifαi(ρ)
)
A(ρ) +

∑N
i=1 νi

(∑Nb
i=1 Pi

∂fαi(ρ)
∂ρi

)
≺ 0

∑Nb
i=1 Pifαi(ρ) � 0

holds for all ρ ∈ Uρ and all ν = colNi=1(νi) ∈ Uν where Uν is the set of vertices of the polytope
in which the derivative of the parameters ρ̇ evolves.

We have explicitly turned an infinite dimensional problem into a finite dimensional prob-
lem where only Nb matrices are sought. The main difficulty of this relaxation stems from
the difficulty of finding the ’good’ type and number of basis functions. The central idea,
generally admitted, is to mimic to behavior of the system and reproduce the same parameter
dependence for P (ρ) and even go a little bit further in the choice of the order (number of
basis functions). An iterative procedure in the best technique but remains time consuming.

1.3.3.2 Relaxation of parametrized LMIs by discretization (gridding)

This LMI relaxation is applicable for any type of parametrized LMIs provided that it is well-
defined for every value of the parameter in their admissible set. The discretization is the
most intuitive and simple way to make the problem finite dimensional. It proposes to replace
the initial semi-infinite problem into a discretized version involving a finite number of finite
dimensional LMI. This is illustrated in the following example.
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Example 1.3.24 The following generic problem is considered. Let L(M,ρ) be a real sym-
metric matrix in the unknown matrix variable M ∈ M where the parameter vector ρ belongs
to some compact subset Uρ of RN . The problem aimed to be solved is:

Solve L(M,ρ) ≺ 0
s.t. M ∈M

for all ρ ∈ Uρ
The gridding approach proposes to simplify the latter problem into a discretized version.

Let Ūρ := {ρ1, . . . , ρk} be a set of distinct points belonging to Uρ (i.e. ρj ∈ Uρ for all
j = 1, . . . , k. Hence the problem reduces to

Solve L(M,ρ) ≺ 0
s.t. M ∈M

for all ρ ∈ Ūρ

This approach is based on the claim that, by discretizing the parameter space, there exists
a density of the grid for which most of critical points are considered. By critical points, we
mean, in the stability analysis, points for which the system is unstable. However, the density
which has to be considered is unknown a priori and its determination remains a difficult
problem. Indeed, if one wants to find a ’good’ density, the location of unstable regions in the
parameter domain is a crucial information. Unfortunately, this information is not accessible
since the knowledge of unstable regions is equivalent to the knowledge of the (in)stability of
the system which is actually sought. This paradox shows that probably no method to find a
’perfect’ gridding would be developed someday.

Example 1.3.25 For instance, let us consider the trivial LPV system

ẋ(t) = (ρ2 − 1)x(t) (1.80)

and ρ ∈ [−1, 1].
It is clear that the asymptotic stability is lost for ρ = −1 and ρ = 1 (we retrieve here an

almost exponentially stable system). Hence if the discretization do not consider explicitly these
two values, the system would be considered as asymptotically stable. It seems very difficult in
this case to prove exactly (i.e. find a ’good’ grid) that the system is asymptotically stable and
moreover, this cannot be viewed in simulations since the parameters have to stay, for a long
time, at critical values of the parameters to discern its instability.

Example 1.3.26 In the case of systems which are locally parametrically unstable:

ẋ(t) = (ρ2 − 1 + ε)x(t) 0 ≤ ε ≤ 1 (1.81)

with ρ ∈ [−1, 1], there exist an infinite number of parameters for which the system is unstable:
ρ ∈ [−1,−

√
1− ε] ∪ [

√
1− ε, 1].

The Lebesgue measure of the interval of values of ρ, for which the system is unstable, is
2(1−

√
1− ε) and taking a gridding of 5 equally spaced points suffices to prove instability of

the system. The largest ε is, the easiest is the proof of instability (the measure of the interval
grows up). On the contrary, the smallest ε is, the hardest is the proof of instability. When
ε > 0, stability with average dwell-time should be considered rather than global parametric
stability. When ε→ 0, the example tends to the first example.
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A second drawback of the approach is the non-characterization of the behavior of the
eigenvalues of the LMIs between gridding points and then it seems difficult to know when the
grid is sufficiently thin.

It is worth noting that the discretization grid may be nonuniform over the whole param-
eter space. Indeed, in theory of interpolation, it has been shown, in many works, that an
uniform discretization may be far from the best choice. For instance, in Lagrange polynomial
interpolation, if the points are equally distant, the interpolated function oscillates above and
below the real curve (Gibbs phenomenon) which can be a problem since, between points, the
eigenvalues may change of sign. It has been shown that if the gridding points coincide with
zero of some polynomial (Chebyshev polynomials are one of the most famous), the oscillations
do not occur anymore. For interpolation with function and there derivatives, Hermite polyno-
mials should be considered instead. Although these methods give ideas on the discretization
scheme, they lead to complicated expression for unknown functions since the order of poly-
nomials approximately equals to the number of discretization points. For more details about
these topics, see for instance [Abramowitz and Stegun, 1972, Bartels et al., 1998, ?].

In terms of computational complexity, let us consider by simplicity that the system has p
parameters whose parameter space are discretized in N + 1 points. This means that the total
number of points is (N + 1)p. Hence, the number of LMI to be solved simultaneously is equal
to the number of points, and thus we have #(LMIs) = (N + 1)p. Generally, this number
is quite large since the number of gridding points must be sufficiently large to be ’sure’ to
capture the behavior of the system.

1.3.3.3 Relaxation of Parametrized LMIs using methods based on
Sum-of-Squares (SOS)

We show here, in a very simple way, what is the sum-of-squares relaxation; where does it
come from and how to use it in the framework of parameter dependent LMIs. The interested
reader should refer to [Gatermann and Parrilo, 2004, Helton, 2002, Parrilo, 2000, Prajna et al.,
2004, Scherer and Hol, 2006] and references therein to get more details. This method applies
only for polynomially parameter dependent LMIs (or possibly to some vary special cases of
rationally parameter dependent LMIs).

The idea is to describe the set of parameter values by a set of polynomial inequalities. Then
using an interesting variation of the S-procedure (see Appendix E.9) constraints are injected
in the LMIs. In such a method, the scalar variables introduced by the S-procedure are no
more constant but vary with respect to parameters, allowing a more thin relaxation. Finally,
it is aimed to show that the latter LMI is sum-of-squares with respect to parameters. Indeed,
if the LMI is sum-of-squares then it is positive definite. Moreover, testing if a polynomial is
a sum-of-squares can be cast as a semidefinite programming problem (SDP problem), this is
an important fact demonstrating the interest of such an approach.

Theorem 1.3.27 Let p(x) be a univariate polynomial of order N . p(x) is nonnegative if
and only if it is sum-of-squares, i.e. there exists N polynomials hi(x) such that p(x) =∑N

i=1 hi(x)2. Moreover, the degree of p(x) is even and the coefficient of the higher power is
positive.

Proof : Necessity: The necessity is obvious. Suppose that p(x) is SOS thus it writes
p(x) =

∑
i qi(x)2 which is obviously nonnegative.
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Sufficiency: Since p(x) = pnx
n + . . .+ p1x+ p0 ≥ 0 is univariate then it can be factorized

as
p(x) = pn

∏

i

(x− ri)ni
∏

j

(x− αk + jβk)mj (x− αk − jβk)mj

where ri and αk ± jβk are respectively all real and complex roots of p(x) with respective order
of multiplicity ni and mj. It is clear that a univariate polynomial is nonnegative if and only
if pn > 0 and the orders of multiplicity of real roots are even and let ni = 2n′j. Noting that

(x− αk + jβk)(x− αk + jβk) = (x− αk)2 + β2
k

then we have
p(x) = pn

∏

i

(x− ri)2n′i
∏

j

((x− αk)2 + β2
k)mj

In virtue of the property that products of sums of squares are sums of squares (the set of SOS
is closed under multiplication), and that all the expression above are SOS, it follows that p(x)
is SOS. �

To illustrates the fact that the nonnegativity of a polynomial can be expressed as a SDP,
let us consider a SOS nonnegative multivariate (n variables) polynomial p(x) of degree 2d.
Then we have

p(x) =
∑

i

qi(x)2 ≥ 0

=
∑

i

z(x)TLTi Liz(x) ≥ 0

=
∑

i

z(x)TQiz(x) ≥ 0

= z(x)TQz(x) ≥ 0

where z(x) is a vector containing monomial of degree up to d whose number of components

equals
(
n+ d
d

)
. Since Qi = QTi � 0 then Q =

∑
iQi � 0 and equivalently Q = QT � 0.

Moreover, the number of squares is equal to rank[Q].
This can be easily transposed to the matrix case:

Theorem 1.3.28 Let P (x) be a matrix univariate polynomial of order N . P (x) is nonnega-
tive if and only if it is sum-of-squares, i.e. there exists N matrix polynomials Hi(x) such that
P (x) =

∑N
i=1Hi(x)THi(x).

In the univariate case, the positivity of the polynomial is equivalent to the existence of a
SOS (sum-of-squares) decomposition. This is also true for quadratic polynomials and quartic
polynomials in two variables. On the other hand, in the multivariate case, a positive definite
polynomial is not necessarily SOS in general. Fortunately, the set of SOS multivariate polyno-
mials is dense in the set of nonnegative polynomials and allows SOS approach to lead to good
results and formulate equivalent tests to problems which are not SOS initially. The following
example describes a nonnegative polynomial which is not SOS but whose nonnegativity can
be expressed as a SOS decomposition problem through an equivalent test.
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Example 1.3.29 The Motzkin’s polynomial

m(x) = 1 + x2
1x

2
2(x2

1 + x2
2 − 3)

is globally nonnegative but cannot be written as a SOS. It is depicted on Figure 1.14 showing
that it vanishes at |x1| = |x2| = 1

Figure 1.14: Motzkin’s polynomial

To see that it is globally nonnegative, let us consider the triplet (1, x2
1x

4
2, x

4
1x

2
2) and in

virtue of the arithmetic-geometric mean inequality (i.e. the arithmetic mean is greater or
equal to the geometric mean) then we have

1 + x2
1x

4
2 + x4

1x
2
2

3
≥ 3

√
x6

1x
6
2

⇒ 1 + x2
1x

4
2 + x4

1x
2
2 − 3x2

1x
2
2 ≥ 0

⇒ 1 + x2
1x

2
2(x2

1 + x2
2 − 3) ≥ 0

(1.82)

It is relatively tough to show that the Motzkin’s polynomial is not SOS. On the other hand,
we will show that its nonnegativity can be cast as a SDP problem anyway by turning the
nonnegativity analysis of m(x) into an equivalent problem involving another polynomial which
is SOS. First multiply the Motzkin’s polynomial m(x) by the positive polynomial x2

1 + x2
2 + 1

and we get
m′(x) = (x2

1 + x2
2 + 1)m(x) (1.83)

It is clear that nonnegativity of m′(x) and m(x) are equivalent. Hence by solving a SDP the
following SOS decomposition of m′(x) is obtained:

m′(x) = (x2
1 + x2

2 + 1)(1 + x2
1x

2
2(x2

1 + x2
2 − 3))

= (x2
1x2 − x2)2 + (x1x

2
2 − x)2 + (x2

1x
2
2 − 1)2 +

1
4

(x1x
3
2 − x3

1x2)2

+
3
4

(x1x
3
2 + x3

1x2 − 2x1x2)2

(1.84)

The SOS approach is explained in the remaining of the section. Let M(ρ) � 0 be a
parameter dependent LMI to be satisfied for every value of ρ in a hyperrectangle I explicitly
given by

I := [ρ−1 , ρ
+
1 ]× . . .× [ρ−p , ρ

+
p ]
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This hyperrectangle can defined through a set of polynomial inequalities (a semi-algebraic
set):

I = {ρ : gi(ρ) ≥ 0, i = 1, . . . , p}
The following example describes the construction of such polynomials.

Example 1.3.30 For example, let (ρ1, ρ2) ∈ I2 := [−1, 1]× [2, 3] hence we have

g1(ρ1) = −ρ2
1 + 1

g2(ρ2) = −ρ2
2 + 5ρ2 − 6

The expression of I through polynomial inequalities is not unique. In the example, above
we have chosen to define one polynomial of degree 2 for each parameter. It would also be
possible to define 4 polynomials of degree 1.

Supplementary constraints can be added in order to specify other relations between pa-
rameters. All these constraints can be combined into a more general semi-algebraic set, say
I ′. Hence, by invoking the classical version of the S-procedure we claim that

M′(ρ) =M(ρ)−
N∑

i=1

gi(ρ)Zi � 0 (1.85)

where matrices Zi = ZTi � 0 are sought.
The idea is to show that if M′(ρ) is a sum-of-squares (i.e. M′(ρ) � 0) for all ρ ∈ I (or

I ′) and in this case we should have

M′(ρ) � 0 ⇔ M(ρ)−
N∑

i=1

gi(ρ)Zi � 0

⇒ M(ρ) �
N∑

i=1

gi(ρ)Zi � 0

The second step of the reasoning is based on the expression of the parameter dependent
LMI in a quadratic form. Let B(ρ) be a basis of the multivariate matrix valued polynomial
M′(ρ) such that we have

M′(ρ) = B(ρ)TQB(ρ) (1.86)

where Q is a constant symmetric matrix. This is called the spectral factorization. Now by
stating that Q � 0 then this implies that M′(ρ) is sum-of-squares. Therefore, the goal is to
find matrices Zi = ZTi � 0 such that Q � 0.

With this formulation, it may happen that no solutions is found even though theM(ρ) � 0
for all ρ ∈ I. So, the next idea is to replace the positive definite matrices Zi by a matrix
multivariate polynomials Zi(ρ) which are sum-of-squares. Changing constant to parame-
ter dependent matrices adds flexibility (as when dealing with robust stability rather than
quadratic stability) and allows to give less conservative stability conditions. Moreover, it has
been shown that by taking greater and greater degrees for matrix polynomials Zi(ρ), the
condition provides less and less conservative results until reach a nonconservative result.

Finally let
B2(ρ)TQ′B2(ρ)
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be the spectral factorization of

M(ρ)−
N∑

i=1

gi(ρ)Zi(ρ) (1.87)

where B2(ρ) is a quadratic basis for (1.87) and Q′ is constant symmetric matrix.
It is also possible to add other degrees of freedom based on the kernel of quadratic forms,

indeed there exist matrices K such that

B2(ρ)TKB2(ρ) = 0 (1.88)

where K is constant symmetric matrix. This constraint allows to take into account relations
between monomials in the basis B2(ρ). The basis is not necessarily B(ρ) since with the
adjunction of Z(ρ) the degree of polynomial may raise.

Thus determining that
Q′ +K � 0 (1.89)

we have

Q′ +K � 0 ⇒ B2(ρ)T (Q′ +K)B2(ρ) � 0, for all ρ ∈ I
⇔ B2(ρ)TQ′B2(ρ) � 0, for all ρ ∈ I

⇔ M−
N∑

i=1

gi(ρ)Zi(ρ) � 0, for all ρ ∈ I

⇔ M �
N∑

i=1

gi(ρ)Zi(ρ) � 0 � 0, for all ρ ∈ I

This method leads to interestingly good results and by growing up the degree of the matrix
valued polynomials Zi(ρ), it asymptotically converges to a necessary and sufficient condition
(non conservative condition). Fortunately, the nonconservative condition is generally attained
for reasonable degree values.

To conclude on the computational complexity, on the one hand, the number of variables
grows up very quickly while raising the degree of SOS polynomials. On the second hand,
the size grows up quickly with respect to the order of polynomials involved in the problem
formulation. See for instance [Dietz et al., 2006] for a brief analysis of the increase of the
number of decision variables on a particular case. This is a common fact that good relaxations
for parameter dependent LMIs lead to expensive test from a computational point of view.

The following example ends the part of SOS relaxation.

Example 1.3.31 Let us consider the matrix

M(ρ) :=
[
−(ρ2 − 4) 1

1 −(ρ2 − 4)

]
(1.90)

and ρ ∈ [−1, 1]. The goal is to prove, using SOS, that M(ρ) � 0 for all ρ ∈ [−1, 1]. It is
clear that M(ρ) is not globally positive definite (i.e. for all ρ ∈ R). To see this, remember
that for a univariate polynomial positive definiteness is equivalent to the existence of SOS
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decomposition. Hence, if we show that M(ρ) is not SOS then it is not positive definite on R.
A spectral decomposition on M(ρ) yields

M(ρ) = B(ρ)T




4 1 0 0
1 4 0 0
0 0 −1 0
0 0 0 −1


B(ρ) (1.91)

where B(ρ) =




1 0
0 1
ρ 0
0 ρ


.

In the univariate case, we have the equivalence

M(ρ) � 0 for all ρ ∈ R⇔ Q � 0

The latter matrix is not globally positive definite since the (2, 2) right-lower block is negative
definite. Now define the set I := [−1, 1]. A second definition of I is given by

I =
{
x ∈ R : g(x) := −x2 + 1 ≥ 0

}

in terms of a polynomial inequality. Introduce

M(ρ)− g(ρ)Z = B(ρ)TQB(ρ)

where Q =




4− z1 1− z2 0 0
1− z2 4− z3 0 0

0 0 −1 + z1 z2

0 0 z2 −1 + z3


 and Z =

[
z1 z2

z2 z3

]
� 0. We can see

that the positive definite matrix Z appears positively in the right-lower block and could make
it positive definite. Now we seek Z = ZT � 0 such that Q � 0. Hence, Q is positive definite
if and only if [

4− z1 1− z2

1− z2 4− z3

]
� 0

[
−1 + z1 z2

z2 −1 + z3

]
� 0

Note that the problem is affine in the variable Z and hence can be solved using SDP. From
these inequalities we get

Z � I[
−1 + z1 z2

z2 −1 + z3

]
� 0

Choosing Z = 2I we obtain
[

4− z1 1− z2

1− z2 4− z3

]
=
[

2 1
1 2

]

The eigenvalues of the latter matrix are respectively {1, 3} showing that Q � 0. Hence we
have M(ρ)− g(ρ)Z � 0 and finally

M(ρ) � g(ρ)Z � 0
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If Q was not found positive definite, then Z would have been chosen as a function of ρ,
and the procedure applied again.

This shows that the SOS approach allows to elaborate LMI conditions for the positive (neg-
ative) definiteness of parameter dependent matrices in which parameters evolve in a bounded
compact set. The great interest is that the resulting conditions are independent of the pa-
rameters and nonconservative provided that the order of relaxation (i.e. the degrees of the
polynomials) is sufficiently large.

1.3.3.4 Global Polynomial Optimization and the Problem of Moments

This approach is dual to the sum-of-squares relaxation. Since the matrix case can be straight-
forwardly turned into the scalar case, we will focus here on the scalar case only for illustration
purpose. The reader should refer to [Henrion and Lasserre, 2004, 2006, Lasserre, 2001, 2007]
and references therein to get more details. This method is based on measure theory and aims
at turning the initial optimization problem over Rn into another optimization problem over
a measure space. Although, the optimization over measure spaces is a rather complicated
problem, such a reformulation is very general and allows to solve a wide type of optimization
problems, including polynomial optimization problems, using SDP.

Consider the optimization problem

inf c(x) s.t.
x ∈ Rn
gi(x) ≥ 0

(1.92)

where c(x) =
∑N

i=1 βix
αi and gi(x) are scalar multivariate polynomials with αi =

[
α1
i . . . αni

]

and xαi = x
α1

i
1 x

α2
i

2 . . . x
αn

i
n .

Assuming that the set

X := {x ∈ Rn : gi(x) ≥ 0, for all i = 1, . . . , N} (1.93)

is non empty, then the optimization problem (1.92) is equivalent to the following optimization
problem

inf
µ

∫

X
c(x)dµ(x) s.t.

∫

X
dµ(x) = 1

(1.94)

where µ is a probability measure over X .
To see the equivalence, note that

∫

X
c(x)dµ(x) ≥ inf

x∈X
c(x)

∫

X
dµ(x)

≥ inf
x∈X

c(x)
(1.95)

Then suppose that x∗ is a global minimizer of c(x) over x ∈ X then the corresponding
measure is

µ∗(x) = δ(x− x∗) (1.96)

where δ is the Dirac measure.
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This shows that the global minimum of problem (1.92) coincides with the global minimum
of problem (1.94). Now, the aim is to explain how the measure µ is found since an optimiza-
tion problem over a measure space is not trivial. First note, that a measure is uniquely
characterized by what we call its moments:

mαi(µ) =
∫

X
xαidµ(x) (1.97)

where αi =
[
α1
i . . . αni

]
and xαi = x

α1
i

1 x
α2

i
2 . . . x

αn
i
n .

The modified cost writes:

∫

X
c(x)dµ(x) =

N∑

i=1

βimαi(µ) (1.98)

and then the optimization problem becomes

min
N∑

i=1

βimαi (1.99)

such that

m[0 0 ... 0] = 1
Mk(m) � 0
Mk−di

(gim) � 0
(1.100)

where 2di or 2di − 1 is the degree of polynomial gi(x). Mk(m) � 0 and Mk−di
(gim) ≺ 0 are

LMIs constraints in m (the moments) corresponding to respective truncations of moment and
localizing matrices (matrices defining the constraints corresponding to the gi(x) in terms of
moments).

The following example should make the above reformulation clearer.

Example 1.3.32 Let us consider the following polynomial optimization problem

inf
x∈R2

2x1 + 2x2
1 − x1x2 s.t.

g1(x) := 2x2
1 − x2 ≥ 0

g2(x) := −x2
1 − x2

2 + 4 ≥ 0
(1.101)

It is clear that the semi-algebraic set

{
x ∈ R2 : g1(x) ≥ 0, g2(x) ≥ 0

}

is non convex since it consists in the closed-interior of a ball minus the epigraph of a parabola
crossing through the origin. This is illustrated in Figure 1.15.
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Figure 1.15: Representation of the nonconvex set
{
x ∈ R2 : g1(x) ≥ 0, g2(x) ≥ 0

}
considered

in the polynomial optimization problem (1.101)

Turning the optimization into the measure formulation, we get

inf 2m10 + 2m20 −m12 s.t.
2m20 −m01 ≥ 0
−m20 −m02 + 4 ≥ 0
m00 = 1

(1.102)

where mij =
∫
X x

i
1x
j
2dµ. Moreover, let us define the following rank-one matrix:

N1(x) :=




1
x1

x2


 [ 1 x1 x2

]
=




1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2


 � 0 (1.103)

Computing the integral of N1(x) over X with measure dµ(x) we get

∫

X
N1(x)dµ(x) = M1(m) � 0 (1.104)

where M1(m) =




1 m10 m01

m10 m20 m11

m01 m11 m02


 � 0

This leads to the first approximation of the polynomial optimization problem

inf 2m10 + 2m20 −m12 s.t.
2m20 −m01 ≥ 0
−m20 −m02 + 4 ≥ 0
m00 = 1
M1(m) � 0

(1.105)
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In order to derive tighter relaxations, note that the matrices g1(x)N1(x) and g2(x)N1(x)
are positive semidefinite since N1(x) � 0 and g1(x), g2(x) ≥ 0. Hence we obtain,

g1(x)N1(x) = (2x2
1 − x2)




1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2




=




2x2
1 − x2 2x3

1 − x2x1 2x2
1x2 − x2

2

2x3
1 − x2x1 2x4

1 − x2x
2
1 2x3

1x2 − x2
2x1

2x4
1 − x2x

2
1 2x3

1x2 − x2
2x1 2x2

1x
2
2 − x3

2


 � 0

g2(x)N1(x) = (−x2
1 − x2

2 + 4)




1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2




=




−x2
1 − x2

2 + 4 −x3
1 − x2

2x1 + 4x1 −x4
1 − x2

2x
2
1 + 4x2

1

−x3
1 − x2

2x1 + 4x1 −x4
1 − x2

2x
2
1 + 4x2

1 −x3
1x2 − x3

2x1 + 4x1x2

−x4
1 − x2

2x
2
1 + 4x2

1 −x3
1x2 − x3

2x1 + 4x1x2 −x2
1x

2
2 − x4

2 + 4x2
2


 � 0

(1.106)
Computing the integral of g1(x)N1(x) and g2(x)N1(x) over X with measure dµ(x) leads

respectively to matrices M1(g1m) and M1(g2m) writing

M1(g1m) =




2m20 −m01 2m30 −m11 2m21 −m02

2m30 −m11 2m40 −m21 2m31 −m12

2m21 −m02 2m31 −m12 2m22 −m03


 � 0

M1(g2m) =



−m20 −m02 + 4 −m30 −m12 + 4m10 −m40 −m22 + 4m20

−m30 −m12 + 4m10 −m40 −m22 +m20 −m31 −m13 + 4m11

−m40 −m22 + 4m20 −m31 −m13 + 4m11 −m22 −m04 + 4m02


 � 0

(1.107)
Since higher order moments are present (up to order 4), we construct the higher order

relaxation matrix M2(m)

M2(m) =




1 m10 m01 m20 m11 m02

m10 m20 m11 m30 m21 m12

m01 m11 m02 m21 m12 m03

m20 m30 m21 m40 m31 m22

m11 m21 m12 m31 m22 m13

m02 m12 m03 m22 m13 m33



� 0

Finally, the optimization problem becomes

inf 2m10 + 2m20 −m12 s.t.
2m20 −m01 ≥ 0
−m20 −m02 + 4 ≥ 0
m00 = 1
M1(g1m) � 0
M1(g2m) � 0
M2(m) � 0

(1.108)

With a similar procedure, it is possible to construct higher order relaxations until obtain
satisfying results.
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Finally, it has been shown that the global minimum found using the relaxation asymptot-
ically converges to the actual global minimum when the order of relaxation k tends to +∞.
Fortunately, as in the sum-of-squares approach, the global minimizer is found for small values
of k. In order to point out the duality between these two methods, just memorize that raising
k corresponds to raise the degree of sum-of-squares polynomials.

The generalization to parameter dependent LMIs is obtained by noticing that a parameter
dependent symmetric matrix M(ρ) is negative definite if and only if all its principal minors
are strictly negative. This brings back the matrix problem to a multiple polynomial scalar
problem. Indeed, for a polynomially parameter dependent symmetric matrix of dimension
k, there are k principal minors taking the form of polynomials, which is exactly the form
presented in this section.

However, the formulation of LMI problem is not trivial and this is illustrated in the
following example.

Example 1.3.33 Let L(ρ,M) ≺ 0 be a parameter dependent LMI aimed to be satisfied where
M ∈M represents decision matrices and the parameter vector ρ belongs to a compact set Uρ.
We define the following optimization problem:

inf −t
fi(ρ,M, t) > 0
M ∈M
ρ ∈ Uρ

where fi(ρ,M, t)) are all minors of L(ρ,M)−tI � 0. The scalar t allows to determine whether
the LMI is satisfied or not. If t < 0 then the problem is feasible and there exists M ∈M such
that L(ρ,M) ≺ 0 for all ρ ∈ Uρ. Moreover, the parameter vector for which the minimum is
attained is also returned by the optimization procedure. On the other hand, if t > 0 then this
means that there exists a parameter vector for which L(ρ,M) ⊀ 0 and the parameter vector
for which maximal eigenvalue of L(ρ,M) is attained is returned.

Consider the scalar inequality f(ρ) = ρ2 − 4 where ρ ∈ [−1, 1]. It is clear that f(ρ) < 0
over that domain. Now consider the optimization problem:

inf −t
ρ2 − 4− t > 0
ρ ∈ [−1, 1]

It is simple to show that topt = −3 for ρ = ±1. Therefore inequality ρ2− 4 < 0 is satisfied for
all ρ ∈ [−1, 1].

Now consider the second optimization problem:

inf −t
ρ2 − 4− t > 0
ρ ∈ [0, 3]

In this case, topt = 5 for ρ = 3. Finally consider the problem of finding k such that ρ2−4+k <
0. In this case, the constraint t < 0 must be added in order to obtain coherent results. The
optimization problem is thus defined by

inf −t
t < 0
ρ2 − 4 + k − t > 0
ρ ∈ [0, 3]



1.3. STABILITY OF LPV SYSTEMS 47

We obtain k = −5− ε and t = −ε for sufficiently small ε > 0.
This example illustrates that the moment approach can be used in order to prove stability

of LPV systems and find suboptimal stabilizing controllers.

This approach is well-dedicated for small to medium size problems. Indeed, the dimension
of LMIs grows quickly, slowing dramatically the resolution by classical SDP solvers. Hence
the computational complexity is globally the same as of sum-of-squares relaxations.

It is worth noting that, as a by-product, such method can be used to find solutions to
BMIs using either scalarization or directly by considering Polynomial Matrix Inequalities
(PMI) [Henrion and Lasserre, 2006]. Nevertheless, although the theory for matrix valued
problem is ready, it is still experimentally at a very preliminary level [Henrion, 2008].

1.3.4 Stability of ’LFT’ systems

The stability of ’LFT’ systems is still an active research topic. Indeed, ’LFT’ systems provide
an unified way to model LPV systems with every type of parameter dependence: affine,
polynomial and rational. By rewriting LPV systems in LFT form, the initial system is split
in two interconnected subsystems: a constant and time-varying one. The stability of the
LPV systems is then determined using results on the stability interconnected systems. Most
of these results are summarized in this section.

Let us recall the LPV system is a ’LFT’ formulation:

ẋ(t) = Ãx(t) +Bw(t)
z(t) = Cx(t) +Dw(t)
w(t) = Θ(ρ)z(t)

(1.109)

The parameter matrix Θ(ρ) is not detailed here since its structure is not fixed a priori and
depend on stability analysis methods. It is important to note that all the tools provided in
that section have been initially developed for robust stability analysis of linear systems. Due
to the genericity of the LFT procedure, all these tools apply naturally to the LPV case.

1.3.4.1 Passivity

The passivity is a very strong result for LPV systems. It can only be used with positive Θ(ρ)
and the LTI system must satisfy a very constraining inequality. Let H(s) = C(sI−Ã)−1B+D
be the transfer function from w to z corresponding to system (1.109) and assume that Θ(ρ)
is diagonal with bounded nonnegative components. We have the following definition (see for
instance [Scherer and Wieland, 2005])

Definition 1.3.34 System H(s) is (strictly) passive if and only if

H(jω) +H(jω)∗(� 0) � 0, for all ω ∈ R (1.110)

This means that, in the SISO case, that the Nyquist plot of H(jω) must lie within the
complex open right half-plane (which is very constraining for system of order greater than 1).
We need the following result:

Proposition 1.3.35 If a strictly passive system is interconnected with a passive system, then
the resulting system is passive.
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As any passive system is asymptotically stable, then the stability of the interconnection is
proved. Then System (1.109) is asymptotically stable if Θ(ρ) is a passive operator and H(s)
a strictly passive one. Θ(ρ) is passive since it is diagonal and has nonnegative elements and
H(s) is strictly passive if strict inequality (1.110) holds. The following examples illustrates
the approach.

Example 1.3.36 Let us consider the SISO LPV system

ẋ = −(2− ρ)x (1.111)

where ρ ∈ [0, 1]. It is clear that the system is quadratically stable since there exists p > 0 such
that −(2 + ρ)p < 0 for all ρ ∈ [0, 1]. The LPV system is then rewritten into the ’LFT’ form

ẋ = −2x+ w
z = x
w = ρx

(1.112)

The transfer function H(s) corresponding to the LTI system is then given by H(s) =
1

s+ 2
and is strictly passive if and only if

H(jω) +H(jω)∗ � 0, for all ω ∈ R
=

1
jω + 2

+
1

−jω + 2
, for all ω ∈ R

=
4

ω2 + 4
� 0, for all ω ∈ R

(1.113)

Hence the LPV system (1.111) is asymptotically stable.

Example 1.3.37 Let us consider the SISO LPV system

ẋ = −(2 + ρ)x (1.114)

where ρ ∈ [0, 1]. This system is also quadratically stable and the ’LFT’ formulation is then
given by

ẋ = −2x− w
z = x
w = ρx

(1.115)

The transfer function H(s) corresponding to the LTI system is then given by H(s) =
−1
s+ 2

and is strictly passive if and only if H(jω) +H(jω)∗ � 0, for all ω ∈ R. However

H(jω) +H(jω)∗ =
−1

jω + 2
+

−1
−jω + 2

, for all ω ∈ R

=
−4

ω2 + 4
� 0, for all ω ∈ R

(1.116)

Since H(s) is not strictly passive then asymptotic stability of system (1.114) cannot be proved
by passivity.
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In the above examples, the sign analysis of the sum H(jω) + H(jω)∗ is performed ana-
lytically due to its simple expression. However, if the transfer function is more complex (i.e.
higher order systems and/or MIMO systems), an analytical analysis is far tougher. Fortu-
nately, a LMI test has been provided, for instance, in [Scherer and Wieland, 2005] allowing
to an easy test for MIMO systems.

Theorem 1.3.38 A system (As, Bs, Cs, Ds) is passive if and only if there exists a matrix
P = P T � 0 such the LMI

[
ATs P + PAs PBs − CTs

? −(Ds +DT
s )

]
≺ 0 (1.117)

is feasible.

The origin of this LMI is detailed in Appendix E.4.
Example 1.3.37 shows that if a system has non minimum phase, the passivity may fail

even in the more simple case of a 1st order system. The fact that a very few systems are
(strictly) passive implies that the stability analysis of LPV systems in ’LFT’ form is very
restrictive and should not be considered.

Nevertheless, in many applications, passivity is very important since it shows that no
energy is added by the loop while interconnecting two systems. For instance, teleoperation
[Hokayem and Spong, 2006, Niemeyer, 1996], drive-by-wire and more generally network con-
trolled systems may be tackled using the passivity theory.

1.3.4.2 Small-Gain Theorem

The small-gain theorem is an enhancement of the passivity based stability analysis of inter-
connections since it takes into account variations of energy between inputs and outputs of
dynamical systems involved in the interconnection. A simple energy analysis of loop-signals
suggests that asymptotic stability of the interconnection is equivalent to finiteness of the
energy of the loop-signals involved in the interconnection. Hence the problem remains to
determine whether the energy of these signals is finite or not.

It is convenient to introduce first the following definitions:

Definition 1.3.39 The energy gain (or L2-gain or L2-induced norm) of a time-invariant
operator T is defined by the relation

γL2 = ||T ||L2−L2 := sup
w∈L2, w 6=0

||Tw||L2

||w||L2

(1.118)

where L2 is set of bounded energy signal (see appendix C for more details). For instance,
unitary energy inputs give at most γL2 energy outputs.

If the operator is not asymptotically stable, then by definition we have γL2 = +∞.

Definition 1.3.40 The H∞-norm of a linear time-invariant operator T is given by

γH∞ = ||T ||H∞ := sup
w∈R

σ̄(T (jω)) (1.119)

where σ̄(T ) is the maximal singular value of the transfer matrix T (s) (see appendix A.6 for
more details on singular values and singular values decomposition).
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In the LTI case, the H∞-norm of a time-invariant operator coincides with the L2-induced
norm (see for instance [Doyle et al., 1990]). As suggested by the definitions, if a LTI system
is asymptotically stable then it has finite H∞-norm.

As an illustration of the approach, let us consider for simplicity, the interconnection of
two SISO transfer functions H1(s) and H2(s) as shown in Figure 1.16.

-

�

?
--

H2(s)

H1(s)
+

−
Hcl(s)- -=⇒

Figure 1.16: Interconnection of two SISO transfer functions

The closed-loop transfer function is then given by the expression

Hcl(s) =
H1(s)

1 +H1(s)H2(s)
(1.120)

It is clear that the closed-loop system is asymptotically stable if and only if H1(s)H2(s) 6=
−1 for all s ∈ C+. From this consideration, by imposing the condition sups∈C+ |H1(s)H2(s)| <
1 it is ensured thatH1(s)H2(s) 6= −1 for all s ∈ C+. Finally, noting that sups∈C+ |H1(s)H2(s)| <
1 is equivalent to

||H1H2||H∞ < 1

we get a sufficient condition for stability in term of H∞-norm analysis.
We introduce now the small-gain theorem, the main result of the section (see for instance

[Zhou et al., 1996]).

Theorem 1.3.41 The LPV system (1.109) is asymptotically stable if the inequality

||Θ(ρ)Hw||L2

||w||L2

< 1 (1.121)

holds where Θ(ρ) is a full-matrix depending on the parameters such that Θ(ρ)TΘ(ρ) � I and
H is the LTI operator mapping w to z

ẋ(t) = Ãx(t) +Bw(t)
z(t) = Cx(t) +Dw(t)

(1.122)

from system (1.109).

It is clear that the sufficient condition
||Θ(ρ)Hw||L2

||w||L2

< 1 may be tough to verify due to the

time-varying nature of the matrix Θ(ρ). Hence, in virtue of the submultiplicative property of
the H∞ norm, i.e.

||H1H2||H∞ < ||H1||H∞ · ||H2||H∞ (1.123)
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then a more conservative sufficient condition is given by

||Θ(ρ)||L2 · ||H||H∞ < 1 (1.124)

It is clear that the condition is sufficient only since, by considering the norm, we loose
all information on the phase of H1(s)H2(s). Indeed, the sup constraint restricts the bode
magnitude plot of H1(jω)H2(jω) to evolve inside the unit disk ignoring the value of the
phase. This results evidently in a conservative (hence sufficient) stability condition. The
following examples illustrate non-equivalence between these results on asymptotic stability.

Example 1.3.42 Let us consider two asymptotically stable LTI SISO system H1(s) and
H2(s) interconnected as depicted on Figure 1.16 and defined by

H1(s) =
10

(s+ 1)(s+ 2)

H2(s) =
10

(s+ 3)(s+ 4)

(1.125)

Since both H1(s) and H2(s) are asymptotically stable then H1(s)H2(s) is asymptotically stable
too. Then we have

||H1H2||H∞ = sups∈C+ |H1(s)H2(s)|
= supω∈R |H1(jω)H2(jω)| by the maximum modulus principle (see Appendix F.5)
= H1(0)H2(0)
= 100/24 > 1

(1.126)
Hence according to the small-gain theorem the interconnection is not asymptotically stable
even though we have

Hbf (s) =
1

1 +H1(s)H2(s)
=

s4 + 10s3 + 35s2 + 50s+ 24
s4 + 10s3 + 35s2 + 50s+ 124

(1.127)

which has poles {−4.8747 + 2.0950i,−4.8747− 2.0950i,−0.1253 + 2.0950i,−0.1253− 2.0950i}
with negative real part, showing that the interconnection is asymptotically stable.

In the latter example, the equality ||H1H2||H∞ = ||H1||H∞ · ||H2||H∞ holds since the
transfer functions H1(s) and H2(s) reach their maximum modulus value at the same argument
s = 0. The following example presents a case for which this equality does not hold:

Example 1.3.43 Let us consider two asymptotically stable LTI SISO system H1(s) and
H2(s) interconnected as depicted on Figure 1.16 and defined by

H1(s) =
1

s2 + 0.1s+ 10
H2(s) =

10
(s+ 3)(s+ 4)

(1.128)

In this case we have

||H1||H∞ =
103

√
99975

at ω =
√

39.98
2

||H2||H∞ =
10
12

at ω = 0

||H1H2||H∞ = 0.7084 at ω = 3.1608

(1.129)



52 CHAPTER 1. OVERVIEW OF LPV SYSTEMS

This shows that while the nyquist plot of H1(jω)H2(jω) remains within the unit disk (asymp-
totic stability of the interconnection). On the other hand, the inequality based on the sub-

multiplicative property of the H∞-norm gives
104

12
√

99975
, which is approximately 2.6356, and

does not allow to conclude on the stability of the interconnection.

It is important to emphasize similarities with open loop analysis for closed-loop systems,
which historically has led to the development of stability margins. As an example the module
margin is defined for a SISO system depicted on Figure 1.16 by

infω∈R 1 +H1(jω)H2(jω) = supjω∈R
1

1 +H1(jω)H2(jω)

=
∣∣∣∣
∣∣∣∣

1
1 +H1(jω)H2(jω)

∣∣∣∣
∣∣∣∣
H∞

(1.130)

Let us now come back to LPV system (1.109). Since, by definition Θ(ρ)TΘ(ρ) ≤ I, we
have ||Θ(ρ)||L2−L2 ≤ 1. To see this, let z̃(t) = Θ(ρ)z̄(t) and then the energy of z̃(t) writes

∫ +∞

0
z̃(s)T z̃(s)ds =

∫ +∞

0
z̄(s)TΘ(ρ(s))TΘ(ρ(s))z̄(s)ds

≤
∫ +∞

0
z̄(s)T z̄(s)ds

(1.131)

Finally the stability condition reduces to

||H||H∞ < 1

and the verification of the latter inequality can be computed by semidefinite programming
through a LMI feasibility test. Indeed, instead of the initial H∞-norm computation using
bisection algorithm [Zhou et al., 1996] or Hamiltonian matrix [Doyle et al., 1990], the bounded
real lemma (see Appendix E.7 and [Scherer and Wieland, 2005, Scherer et al., 1997, Skelton
et al., 1997]) allows to compute the L2-induced norm of linear (possibly time/parameter
varying) systems.

Lemma 1.3.44 The interconnected system (1.109) is asymptotically stable if there exist a
matrix P = P T � 0 and a scalar ε > 0 such that



ÃTP + PÃ PB CT

? −(1− ε)I DT

? ? −(1− ε)I


 ≺ 0 (1.132)

It is important to point out that, while condition ||Θ(ρ)||L2 ·||H||H∞ < 1 implies ||Θ(ρ)H||L2 <
1, the converse generally does not hold (see Examples 1.3.42 and 1.3.43). Indeed, the equality
in (1.123) rarely holds, except for very special cases (see Example 1.3.42).

The small-gain condition is a simple stability test but is however rather conservative.
First of all, it does not consider the phase and secondly no information is looked out on how
the elements interconnect, the shape of the intersecting elements but their maximal value
only (their norm). Indeed, as illustrated in Example 1.3.42, if the maximum values do not
occur at the same frequency, the submultiplicative inequality is conservative. This is far
more complicated when dealing with nonlinear or non-stationary elements. The last example
illustrates this.
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Example 1.3.45 As an example note that

||2 sin(t)||L∞ < 2∣∣∣∣
∣∣∣∣

1
2 + cos(t)

∣∣∣∣
∣∣∣∣
L∞

< 1

Hence we have

||2 sin(t)||L∞ ·
∣∣∣∣
∣∣∣∣

1
2 + cos(t)

∣∣∣∣
∣∣∣∣
L∞

< 2

but actually we have
∣∣∣∣
∣∣∣∣

2 sin(t)
2 + cos(t)

∣∣∣∣
∣∣∣∣
L∞

< 2/3 which shows that the application of the submul-

tiplicative property may result in very conservative bounds (conditions).

The latter example shows that how the interconnection holds, is primordial is the stability
analysis. Figure 1.17 provides a geometric representation of the conservatism of the small-gain
theorem.

Figure 1.17: Illustration of the conservatism induced by the use of the H∞-norm. Although,
the pieces of puzzle fit together, the consideration of the H∞ norm says the contrary.

In order to explain Figure 1.17 assume that the free piece is an operator P and let O be
the center of the piece. Since the piece is two-dimensional we assume that it belongs to a two-
dimensional normed vector space. In what follows we will consider that the free piece is an
operator and the remaining of the puzzle constitutes the other operator. The interconnection
of systems is substituted to an interconnection of pieces of puzzle. Moreover, the asymptotic
stability of the interconnection is replaced by the possibility of placing the piece at this place.
The image shows that the piece interlocks perfectly. We show hereafter that by ignoring the
shape of the piece and reducing it to a single value (a norm), the piece and the remaining
cannot be shown to fit together.

The operator P affects any vector v(θ) =
[

cos(θ)
sin(θ)

]
to a new vector v′(θ) whose 2-norm

equals the length between the center O and the boundary of the piece in the orientation
θ ∈ [0, 2π] (orientation 0 points to the right).
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Therefore for every v(θ) we have

Pv(θ) = v′(θ) = λ(θ)v(θ) (1.133)

since only the norm of the vector is changed. As a comparison the H∞ of an operator is
the largest energy gain that is applied to an input signal entering this operator. It is the
modification of the norm of the input signal where the norm is the energy.

It is clear that by considering the norm

||P || = sup
θ∈[0,2π]

||Pv(θ)||2
||v(θ)||2

(1.134)

the farthest point on the boundary from 0 is taken into account and the piece is considered
as circle shaped with radius ||P ||. In this condition no puzzle can be finished and hence more
sophisticated techniques should be employed to determine if some pieces correspond.

The puzzle analogy shows that the shape (the structure) of interconnected elements should
play a crucial role in the stability analysis. It is clear that if the matrix Θ(ρ) is full, then
a priori only norm-information can be extracted. On the other hand, if this matrix has a
specific and known form it is possible to refine the small-gain theorem in a new version.

1.3.4.3 Scaled-Small Gain Theorem

The aim of the scaled-small gain lemma is to reduce the conservatism of the small-gain the-
orem by considering the structure of the parameter-varying matrix gain Θ(ρ). It is generally
assumed, in the LPV framework, that the matrix has a diagonal structure

Θ(ρ) = diag(In1 ⊗ ρ1, . . . , Inp ⊗ ρp) (1.135)

Let us introduce the set of D-scalings is defined by

SD(Θ) :=
{
L ∈ Sn̄++ : Θ(ρ)L1/2 = L1/2Θ(ρ) for all ρ ∈ [−1, 1]p

}
(1.136)

where n̄ = ||col(n1, . . . , np)||1 and L1/2 denotes the positive square-root of L. For more details
on the scalings the reader should refer to [Apkarian and Gahinet, 1995] or Appendix E.11.

The key idea is to define a matrix L ∈ S(Θ) to embed information on the structure of
the parameter matrix, through a commutation property. This additional matrix will then
be introduced in the bounded-real lemma and provides extra degree of freedom and thus, a
reduction of conservatism is expected [Packard and Doyle, 1993].

Example 1.3.46 Consider the following parameter matrix Θ(ρ) =
[
ρ1I5 0

0 ρ2I2

]
, then a

suitable matrix L ∈ S(Θ) is given by

L =
[
L1 0
0 L2

]

where L1 ∈ S5
++ and L2 ∈ S2

++.
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Since L ∈ SD(Θ) is positive definite, let us define a dual parameter matrix

Θ̃(ρ) = L1/2Θ(ρ)L−1/2

It is clear that, in virtue of the definition of set SD(Θ), the following identity holds

Θ̃(ρ) = Θ(ρ)

In what follows, we aim at showing that the feasibility of the scaled-bounded real lemma
implies asymptotic stability of the interconnection. To this aim, let w2 and z2 be L2 signals
satisfying w2(t) = Θ̃(ρ)z2(t). First, let us show that operator Θ̃(ρ) has unitary energy gain.
Suppose that it is has energy gain of γθ > 0, then the following integral quadratic function
must be nonnegative.
∫ +∞

0

[
w2(s)
z2(s)

]T [
γ2
θI 0
0 −I

] [
w2(s)
z2(s)

]
ds =

∫ +∞

0
z(s)TΞ(ρ, L)z(s)ds

Ξ(ρ, L) = γ2
θI − L−1/2Θ(ρ)TLΘ(ρ)L−1/2

(1.137)

where z2(t) and w2(t) are respectively the input and output of operator Θ̃(ρ). The latter
integral quadratic form is nonnegative for all z if and only if

γ2
θI − L−1/2Θ(ρ)TLΘ(ρ)L−1/2 � 0 (1.138)

and, according to the definition of the set SD(Θ) by (1.136), if and only if

γ2
θI −Θ(ρ)TΘ(ρ) � 0 (1.139)

Since Θ(ρ)TΘ(ρ) � I then γθ = 1 is the minimal value such that (1.139) holds. This shows
that rather than considering Θ(ρ) it is not aberrant to consider Θ̃(ρ) instead.

Finally, in virtue of these considerations, if the interconnection of the LTI system and
dual parameter matrix Θ̃(ρ)

ẋ(t) = Ãx(t) + Ew2(t)
z2(t) = Cx(t) +Dw2(t)
w2(t) = Θ̃(ρ)z2(t)

(1.140)

is asymptotically stable, then (1.109) is asymptotically stable. It is worth noting that, by
introducing notations L−1/2z2(t) = z(t) and w2(t) = L1/2w(t) we get the following system:

ẋ(t) = Ãx(t) +BL1/2w(t)
z2(t) = L1/2(Cx(t) +DL1/2w(t))
w(t) = Θ(ρ)z(t)

(1.141)

Finally, applying the bounded-real lemma on scaled system (1.141) we get the matrix
inequality in P and L1/2:



ÃTP + PÃ PBL1/2 CTL1/2

? −I L1/2DTL1/2

? ? −I


 ≺ 0

Performing a congruence transformation with respect to matrix diag(I, L1/2, L1/2) yields
the following result:
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Lemma 1.3.47 System (1.109) is asymptotically stable if there exist P = P T � 0 and
L ∈ SD(Θ) such that 


ATP + PA PB CTL

? −L DTL
? ? −L


 ≺ 0 (1.142)

Note that, if L = I, the condition of the small-gain theorem is retrieved.
Another vision of the scaled-small gain lemma, is the problem of finding a bijective and

sign preserving (L � 0) change of variable for signals involved in the interconnection, such that
the system behavior is unchanged (role of the commutation). A suitable change of variable is
then given by matrices L1/2 and L−1/2. Several different approaches can be used to establish
such a result, for instance using the S-procedure (see the next section and Appendix E.12),
or the bounding lemma (see appendix E.14).

The scaled-small gain theorem leads to less conservative result than the small-gain but
only considers the structure of the parameter varying matrix Θ(ρ). This is the reason why, for
small uncertainties, the result is necessary and sufficient [Packard and Doyle, 1993] (actually if
the sum of the number repeated scalar blocks and the unrepeated full-blocks is lower than 3).
For larger uncertainties, too low information is taken into account on how the two subsystems
are interconnected (the shape of the operators). Indeed, this information is destroyed again
by the use of norms which gathers multiple data (each entry of matrices) into one unique
positive scalar value (see the Examples 1.3.42, 1.3.43 and 1.3.45).

The next idea would be to find a better framework in which the shape of the operators can
be better characterized and considered, avoiding then the use of coarse norms (e.g. the H∞).
The next section on the full-block S-procedure and the notion of well-posedness of feedback
systems, partially solves this problem.

1.3.4.4 Full-Block S-procedure and Well-Posedness of Feedback Systems

Both recent results have brought many improvements in the field of LPV system analysis and
LPV control. We have chosen to present them simultaneously since they are two facets of the
same theory but are proved using different fundamental theories.

Full-Block S-procedure

The full-block S-procedure has been developed in several research papers [Scherer, 1996,
1997, 1999, 2001, Scherer and Hol, 2006] and applied to several topics [Münz et al., 2008,
Wu, 2003]. In [Briat et al., 2008c], we have developed a delay-dependent stabilization test
using this approach and is an extension of the results of [Wu, 2003] which considers delay-
independent stability.

In Section ??, this approach will be used in order to derive a delay-dependent robust
parameter dependent state-feedback control law for time-delay systems .

This approach is based on the theory of dissipativity (see appendix E.1 and [Scherer
and Wieland, 2005] for more details on dissipativity) but to avoid too much (and sometimes
tough) explanations, the fundamental result of the full-block S-procedure will be retrieved
here through a simple application of the S-procedure (see appendix E.9 and [Boyd et al.,
1994]).

Let us consider system (1.109) where Θ(ρ) is neither diagonal and possibly has a full
structure. We also relax the image set of the parameters to a more general compact set, we



1.3. STABILITY OF LPV SYSTEMS 57

hence assume that
ρ ∈ ×pi=1[ρ−i , ρ

+
i ] (1.143)

The key idea of the full-block S-procedure is to characterize the parameter matrix Θ(ρ)
in a more complex way allowing for a tighter approximation of the set in which the parameter
matrix Θ(ρ) evolves. This is performed using an integral quadratic constraint (IQC). Indeed
assume that there exists a bounded matrix function of time MΘ(t) = MΘ(t)T such that

∫ t

0

[
z(s)
w(s)

]T
MΘ(s)

[
z(s)
w(s)

]
ds � 0 (1.144)

for all t > 0 and w(t) = Θ(ρ)z(t). The latter IQC is equivalent to
∫ t

0
z(s)T

[
I

Θ(ρ(s))

]T
MΘ(s)

[
I

Θ(ρ(s))

]
z(s)ds � 0 (1.145)

It is clear that the matrix MΘ has, a priori, no imposed inertia. It will be shown at the end
of this section that it is possible to define specific matrices MΘ for which previous results are
retrieved (passivity, small-gain and scaled small-gain results). Hence, the current framework
should provide less conservative results.

Hence, the following Lyapunov function is considered

V (x(t)) = x(t)TPx(t) > 0 (1.146)

with constraint on input and output signals w and z taking the form of the IQC (1.144).
Thus, by invoking the S-procedure (see Appendix E.9) or the theory of dissipative systems

(see [Scherer and Wieland, 2005] or E.1), the following function is constructed

H(x(t), w) = x(t)TPx(t)−
∫ t

0

[
z(s)
w(s)

]T
MΘ(s)

[
z(s)
w(s)

]
ds

= x(t)TPx(t)−
∫ t

0
z(s)T

[
I

Θ(ρ(s))

]T
MΘ(s)

[
I

Θ(ρ(s))

]
z(s)ds

(1.147)

Since, the integrand of (1.145) is a quadratic form and z ∈ L2 in a general signal, then
inequality (1.145) holds if and only if

[
I

Θ(ρ(t))

]T
MΘ(t)

[
I

Θ(ρ(t))

]
� 0 (1.148)

for any trajectories tracked by ρ(t) ∈ ×pi=1[ρ−i , ρ
+
i ] and all t > 0.

Finally, computing the time-derivative of H leads to the result:

Theorem 1.3.48 System (1.109) is asymptotically stable if and only if there exist a matrix
P = P T � 0 and a bounded matrix function MΘ : R+ → Snw+nz such that the LMIs

[
ATP + PA PE

? 0

]
+
[
C D
0 I

]T
MΘ(t)

[
C D
0 I

]
≺ 0 (1.149)

[
I

Θ(ρ(t))

]T
MΘ(t)

[
I

Θ(ρ(t))

]
� 0 (1.150)

hold for all t > 0.
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Proof : A complete proof with meaningful discussions can be found in [Scherer, 1997, 1999,
2001]. �

The main difficulty in such a result resides the computation of LMI (1.150). Even if MΘ

is chosen constant, we are faced to a problem involving infinitely many inequalities since the
inequality should be satisfied for any parameter trajectories. Methods for dealing with such
parameter dependent LMIs have been introduced in Sections 1.3.3.2, 1.3.3.3 and 1.3.3.4 where
gridding, SOS and global polynomial optimization approaches are introduced.

It is important to point out that, due to the losslessness of the S-procedure for 1-
constrained quadratic functions (see appendix E.9 and [Boyd et al., 1994]), the conserva-
tiveness of the approach stems from the choice of MΘ(s) satisfying LMI (1.150). Moreover,
by simplicity in most of the cases this matrix is chosen to be constant.

Well-Posedness Approach

The well-posedness approach is now compared to the full-block S-procedure . This ap-
proach has been initially introduced in [Iwasaki and Hara, 1998] and deployed in many frame-
works [Gouaisbaut and Peaucelle, 2006a, 2007, Iwasaki, 2000, 1998, Langbort et al., 2004,
Peaucelle and Arzelier, 2005, Peaucelle et al., 2007]. The key idea behind well-posedness is
the notion of topological separation [Safonov, 2000, Teel, 1996, Zames, 1966] and is explained
in what follows.

Consider two interconnected systems H1 and H2 such that

z = H1(w + u1)
w = H2(z + u2)

(1.151)

where u1, u2 are exogenous signals as described in Figure 1.18. Note that here, systems H1 and
H2 are not dynamical systems but only general applications from a vector space to another.

H1

z(t)w(t)

H2

? --

6

� �

u1(t)

u2(t)
+

+

Figure 1.18: Setup of the well-posedness framework

It is convenient to introduce here the definition of well-posedness:

Definition 1.3.49 The interconnection depicted in Figure 1.18 is said to be well-posed if and
only if the loop-signals z, w are uniquely defined by the input signals u1, u2 and initial values
of the loop-signals. In other terms, it is equivalent to the existence of a positive scalar γ > 0
such that the energy of loop signals is bounded by a function of the energy of input signals,
i.e. ∣∣∣∣

∣∣∣∣
(
z
w

)∣∣∣∣
∣∣∣∣
L2

≤ γ
∣∣∣∣
∣∣∣∣
(
u1

u2

)∣∣∣∣
∣∣∣∣
L2
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The latter definition says that if for finite energy input signals, we get finite energy loop-
signals then the system is well-posed. Recall that the notion of stability is not defined yet
since operators H1 and H2 are general and not necessarily dynamic.

The idea behind well-posedness is to prove well-posedness of the interconnection when
the interconnection describes a dynamical system. In this case, well-posedness is equivalent
to asymptotic stability or equivalently L2−L2 stability. The following example shows how a
dynamical system can be represented in an interconnection as of Figure 1.18.

Example 1.3.50 Let us consider the trivial linear dynamical system described by ẋ = A(x(t)+
v(t)) where v(t) is an external input.. First, note that by imposing H1 = A and H2 = s−1

where s is the Laplace variable, then the interconnection depicted in Figure 1.19 is equivalent
to system ẋ = A(x(t) + v(t)).

�s−1I

A

ẋ(t)x(t)

?--v(t) +

Figure 1.19: Representation of a linear time invariant dynamical system in the well-posedness
framework

Now suppose that the interconnection is well-posed: the future evolution of x(t) for t > t0
is uniquely defined by x(t0) and signal v(t) for all s ∈ C+. We aim now to illustrate that
well-posedness in this case is equivalent to asymptotic (and even exponential) stability.

From Figure 1.19 we have
ẋ = A(x+ v)

which is equivalent to
sx = A(x+ v) + x(t0)

and thus
(sI −A)x = Av + x(t0)

Therefore if x(t) is uniquely defined by v(t) and x(t0) for t > t0, this means that (sI −A)
is nonsingular for all s ∈ C+. This condition is equivalent to saying that A has no eigenvalues
in the complex right-half plane and that A is a stable matrix.

On the other hand, suppose that A is Hurwitz then this means that sI −A is non singular
for all s ∈ C+ and hence x is uniquely defined by v(t) and x(t0). Thus the interconnection is
well-posed.

We aim now at introducing how well-posedness can be proved efficiently (using numerical
tools), at least for linear dynamical systems. This is performed trough nice geometrical
arguments.
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Coming back to the setup depicted in Figure 1.18, let G1 and G−2 be respectively the graph
of H1 and the inverse graph of H2 defined as:

G1 :=
{(

z
w

)
∈ Rnw+nz : z = H1w

}
= Im

(
H1

I

)

G−2 :=
{(

z
w

)
∈ Rnw+nz : w = H2z

}
= Im

(
I
H2

) (1.152)

where nw and nz denote respectively the dimension of w and z. We have the following
important result:

Proposition 1.3.51 Interconnection (1.151) is well-posed if and only if the following relation
holds:

G1 ∩ G−2 = {0} (1.153)

In order to visualize this important result, let us consider the case where z = H1(w+ u1)
and w = H2(z + u2), H1 ∈ Rnz×nw and H2 ∈ Rnw×nz . The graphs are then given by

G1 = Im
(
H1

1

)

G−2 = Im
(

1
H2

) (1.154)

We aim now to find the intersection of these sets and we get the following system of linear
equations

H1w − z = 0
w −H2z = 0

(1.155)

Converted to a matrix form, it becomes

H

[
z
w

]
=
[

0
0

]
(1.156)

where H =
[
−Inz H1

−H2 Inw

]
.

If det(H) = 0 then there exists a infinite number of vectors
[
z
w

]
such that (1.156)

is satisfied and thus the interconnection is not well-posed. Moreover, in this case we have

det(I −H2H1) = 0 and and the null-space is spanned by
(
H1

I

)
.

If the matrix H is non singular, then the null-space reduces to the singleton {0} and the
system is well-posed since the intersection of the graphs is {0}. It is important to point out
that the following relation holds in any case

G1 ∩ G−2 = Null
(
−I H1

−H2 I

)
(1.157)

Therefore, the problem of determining if an interconnection of systems is well-posed is
crucial in the framework of interconnected dynamical systems and reduces to the analysis of
the intersection of graphs (or equivalently to matrix algebra for linear mappings H1 and H2).



1.3. STABILITY OF LPV SYSTEMS 61

The idea now is to find a simple way to prove that the graphs do not intersect except at 0.
In what follows, the framework is restricted to linear mappings and in this case, the graphs
become convex sets, which is an interesting property. First, recall a fundamental result on
convex analysis called the Separating Hyperplane Theorem; [Boyd and Vandenbergue, 2004,
p. 46].

Theorem 1.3.52 Suppose C1 and C2 are two convex sets that do not intersect (i.e. C1∩C2 =
∅). Then there exist a 6= 0 and b such that aTx ≤ b for all x ∈ C1 and aTx ≥ b for all x ∈ C2.
In other words, the affine function aTx− b is nonpositive on C1 and nonnegative on C2. The
hyperplane

{
x : aTx = b

}
is called a separating hyperplane for the sets C1 and C2, or is said

to separate the sets C1 and C2.

This results says that two convex sets are disjoints if and only if one can find a function
which is positive on one set and negative on the others. The latter result applied to the
separation of graphs G1 and G−2 leads to the following theorem proved in [Iwasaki, 2000,
Iwasaki and Hara, 1998]:

Theorem 1.3.53 The following statements are equivalent:

1. The interconnection of system is well-posed

2. det(I −H2H1) 6= 0

3. There exist M = MT such that

a)
[
I H1

]
M

[
I
H∗1

]
≺ 0

b)
[
H2 I

]
M

[
H∗2
I

]
� 0

The following example illustrates the method.

Example 1.3.54 Let us consider again the LTI system of Example 1.3.50 and define H1 := A
and H2 := s−1I. From Theorem 1.3.53, the system is asymptotically (exponentially) stable if
and only if the LMIs hold

[
I A

]
M

[
I
AT

]
≺ 0 and

[
s−1I I

]
M

[
s−∗I
I

]
� 0

As in Example 1.3.50, the well-posedness of the interconnection is sought for all s ∈
C+. Indeed, this would mean that A has no eigenvalues in C+ implying that the system is
asymptotically stable.

It is clear that if M is chosen to be M :=
[

0 X
X 0

]
with X = XT � 0, then

[
s−1I I

] [ 0 X
X 0

] [
s−∗I
I

]
= (s−1 + s−∗)X = 2<[s−1]X � 0 since s ∈ C+

Therefore, the stability of system ẋ = Ax is ensured if and only if

[
I A

] [ 0 X
X 0

] [
I
AT

]
≺ 0
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which is equivalent to
AX +XAT ≺ 0⇔ PA+ATP ≺ 0 (1.158)

where P = X−1. The well-known LMI condition obtained from Lyapunov theorem is retrieved.

It may be thought that the choice of M =
[

0 X
X 0

]
would be conservative but in fact it

is not. This explained in what follows.

List of scalings

We aim now at presenting several scalings/separators that may be used in both full-block
S-procedure and well-posedness approaches; [Iwasaki and Hara, 1998].

First of all, let us introduce the P -separator. Suppose that H2 is block diagonal and
satisfies

[
H2 I

] [ M11 M12

? M22

] [
H∗2
I

]
� 0

with fixed matrices Mij . Then under the assumption that M22 � 0 and M11−M12M−1
22 M

T
12 ≺

0, the P -separator defined as (⊗ denotes the Kronecker product):

P ⊗M =
[
P ⊗M11 P ⊗M12

? P ⊗M22

]
(1.159)

provides a nonconservative condition if 2c + f ≤ 3 where c is the number of repeated scalar
blocks in H2 and f is the number of unrepeated full-blocks in H2 (see [Iwasaki and Hara,
1998, Packard and Doyle, 1993] for more details). For instance, in example 1.3.54, s = 1
(only s−1 is repeated) and f = 0 (no full-blocks). Hence condition (1.158) is a necessary and
sufficient condition to stability of system ẋ = Ax (which is actually a well-known result).

Example 1.3.55 Let us consider the latter example. The set of values of s ∈ C+ can be
defined in an implicit way

C+ :=
{
s ∈ C :

[
s−1 1

] [ 0 1
1 0

] [
s−∗

1

]
≥ 0
}

Using the P -separator we get the matrix M =
[

0 X
X 0

]
and moreover since we have one

repeated scalar block then the P -separator provides a nonconservative stability condition.

The following (non-exhaustive) list enumerates specific scalings/separators for different
types of operators H2:

1. The constant scaling M =
[

0 I
I 0

]
for positive operators results in a passivity based

test.

2. The constant scaling M =
[
I 0
0 −I

]
for unitary norm bounded operators results in a

test based on the bounded real lemma.
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3. The constant D-scalings M =
[
D 0
0 −D

]
for D = DT > 0 (for unitary norm bounded

operators) are the most simple ones and the result of the scaled-bounded real lemma
are retrieved.

4. The constant D-G scalings M =
[
D G
G∗ −D

]
for D = DT > 0 and G + G∗ = 0 (for

unitary norm bounded operators) are a generalization of the constant D-scalings to a
more general case.

5. LFT scalings: M =
[
R S
S∗ Q

]
with R ≺ 0 and

[
Θk I

]
M

[
ΘT
k

I

]
� 0 for k =

1, . . . , 2α (time-invariant and time-varying parameters).

6. Vertex separators M =
[
R S
S∗ Q

]
with Rii � 0 and

[
Θk I

]
M

[
ΘT
k

I

]
� 0 for

k = 1, . . . , 2α (time-invariant and time-varying parameters).

These separators lead to less and less conservative results despite of increasing the computa-
tional complexity.

After this brief description of well-posedness, we wish now to supply a LPV system de-
scription in the well-posedness framework. Let us rewrite the LPV system (1.109) into the
form:

[
z(t)
ẋ(t)

]
=
[
D C
B A

]

︸ ︷︷ ︸
H1

[
w(t)
x(t)

]
(1.160)

with
[
w(t)
x(t)

]
=
[

Θ(ρ) 0
0 s−1I

]

︸ ︷︷ ︸
H2

[
z(t)
ẋ(t)

]
for s ∈ C+.

Following previous results, well-posedness of the latter system is equivalent to the asymp-
totic (exponential) stability of system (1.109). In this case, M can be chosen as

M :=




M11 0 M12 0
0 0 0 P

MT
12 0 M22 0

0 P 0 0


 (1.161)

where P = P T � 0, M11 = MT
11, M12 and M22 = MT

22 are free matrices to be determined.
Note that the matrix M contains both a P -separator involving the matrix X (for the stability
condition) and a full-separator M = [Mij ]i,j (for the parameter consideration).
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Now applying Theorem 1.3.53, we get

[
I 0 D C
0 I B A

]



M11 0 M12 0
0 0 0 P

MT
12 0 M22 0

0 P 0 0







I 0
0 I

DT BT

CT AT


 ≺ 0

[
Θ(ρ) 0 I 0

0 s−1I 0 I

]



M11 0 M12 0
0 0 0 P

MT
12 0 M22 0

0 P 0 0







Θ(ρ) 0
0 s−1I

I 0
0 I


 � 0

(1.162)

Expanding the relations, we get

<[s−1]P � 0 (1.163)
[

Θ(ρ) I
] [ M11 M12

MT
12 M22

] [
Θ(ρ)T

I

]
� 0 (1.164)

[
0 CP
? AP + PAT

]
+
[
I D
0 B

] [
M11 M12

? M22

] [
I 0
DT BT

]
≺ 0 (1.165)

Inequality (1.163) is satisfied by assumption therefore only inequalities (1.164) and (1.165)
have to be (numerically) checked. In order to bridge results from full-block S-procedure and
well-posedness, we will show that inequalities (1.164) and (1.165) are equivalent to (1.149)
and (1.150).

Note that (1.165) can be rewritten into the form




0 C
I A

I D
0 B




T 


0 P 0 0
P 0 0 0
0 0 M11 M12

0 0 MT
12 M22







0 C
I A

I D
0 B


 ≺ 0 (1.166)

It is possible to show that the dualization lemma applies (see Appendix E.13 or [Iwasaki
and Hara, 1998, Scherer and Wieland, 2005, Wu, 2003]) and then LMI (1.166) is equivalent
to 



−A −B
I 0
−C −D
0 I




T 


0 P̃ 0 0
P̃ 0 0 0
0 0 M̃11 M̃12

0 0 M̃T
12 M̃22







−A −B
I 0
−C −D
0 I


 � 0 (1.167)

where P̃ = P−1 and
[
M̃11 M̃12

M̃T
12 M̃22

]
=
[
M11 M12

MT
12 M22

]−1

.

By expanding the latter inequality we get
[
−AT P̃ − P̃A −P̃B

? 0

]
+
[
−C −D
0 I

]T [
M̃11 M̃12

M̃T
12 M̃22

] [
−C −D
0 I

]
� 0 (1.168)

or equivalently
[
−AT P̃ − P̃A −P̃B

? 0

]
+
[
C D
0 I

]T [
M̃11 −M̃12

−M̃T
12 M̃22

] [
C D
0 I

]
� 0 (1.169)
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Moreover, in virtue of the dualization lemma again, we have

[
Θ(ρ) I

] [ M11 M12

MT
12 M22

] [
Θ(ρ)T

I

]
� 0⇐⇒

[
−I Θ(ρ)T

] [ M̃11 M̃12

M̃T
12 M̃22

] [
−I

Θ(ρ)

]
≺ 0

(1.170)
and equivalently

[
I Θ(ρ)T

] [ M̃11 −M̃12

−M̃T
12 M̃22

] [
I

Θ(ρ)

]
≺ 0 (1.171)

Finally, by multiplying inequalities (1.169) and (1.171) by -1, we get

[
AT P̃ + P̃A P̃B

? 0

]
+
[
C D
0 I

]T [ −M̃11 M̃12

M̃T
12 −M̃22

] [
C D
0 I

]
� 0

[
I Θ(ρ)T

] [ −M̃11 M̃12

M̃T
12 −M̃22

] [
I

Θ(ρ)

]
≺ 0

(1.172)

By identification these latter relations are identical to (1.149) and (1.150) obtained by

application of the full-block S-procedure where MΘ =
[
−M̃11 M̃12

M̃T
12 −M̃22

]
and P̃ plays the

role of the Lyapunov matrix used to define the quadratic Lyapunov function.
This emphasizes the similarities between the results obtained from the full-block S-

procedure and the well-posedness approach. It is important to point out that in every methods
presented up to here, only quadratic stability was considered and may result in conservative
stability conditions. Robust stability is addressed here in the framework of well-posedness
of feedback systems. The procedure used here can be applied to any approach presented
in preceding sections. The main reasons for presenting robust stability for LFT systems at
this stage only now is the simplicity of the well-posedness approach. Moreover, as we shall
see later, it is possible to connect these results to parameter dependent Lyapunov functions
results introduced in Section 1.3.3.

LPV systems as implicit systems

The following method has been developed in [Iwasaki, 1998] but some other methods have
been developed in order to define a LPV system as an implicit system [Masubuchi and Suzuki,
2008, Scherer, 2001]. It is convenient to introduce the following result on well-posedness of
implicit systems. This is the generalization of well-posedness theory for dynamical system
governed by expressions of the form

[
A− sI B
C D

]
ζ = 0 (1.173)

where s is the Laplace variable and ζ are signals involved in the system. Such an expression
describes a linear-time invariant dynamical system coupled with a static equality between
signals. This type of systems is not without recalling singular systems in which static relations
are captured in a matrix E factoring the time-derivative of x (e.g. Eẋ = Ax). As an
illustration of the formalism, system (1.173) represents the wide class of systems governed by
equations:

ẋ = Ax+ Bw
0 = Cx+Dw (1.174)
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when ζ = col(x,w) which in turn can be rewritten in the singular system form
[
I 0
0 0

] [
ẋ
ẇ

]
=
[
A B
C D

] [
x
w

]
(1.175)

Some fundamental definitions on implicit systems are recalled here for informational pur-
pose.

Definition 1.3.56 The implicit system (1.173) is said to be regular if the following conditions
hold:

1. There is no impulsive solution, i.e. the system is impulse free [Verghese et al., 1981];

2. for each x(0−), the solution, if any, is unique.

One of the particularities of such systems is that under certain circumstances (i.e. accord-
ing system matrices), the state evolution may contain impulsive terms (i.e. Dirac pulses) of
theoretically infinite amplitude. Moreover, it is also possible that no solutions exist or may
be non unique. It is then important to characterize the regularity of implicit systems. The
following lemma, proved in [Iwasaki, 1998], gives a necessary and sufficient condition for the
system to be regular.

Lemma 1.3.57 Implicit system (1.173) is regular if and only if D has full column rank.

Definition 1.3.58 System (1.173) is said to be stable if it is regular and for each x(0−) the
solution, if any, coneverges to zero as t tends to +∞.

The latter definition generalizes the notion of stability of linear differential systems to
linear differential systems with static equalities constraints.

The following lemmas [Iwasaki, 1998] provide necessary and sufficient conditions for sta-
bility and robust stability of (uncertain) implicit systems.

Lemma 1.3.59 Consider implicit system (1.173). The following statements are equivalent:

1. The system is stable;

2. The matrix
[
A− sI B
C D

]
has full-column rank for all s ∈ C+ ∪ {∞};

3. C(sI −A)−1B +D has full-column rank for all s ∈ C+ ∪ {∞}.

Let us consider now the uncertain implicit system governed by
[
A− sI B 0
C D ∆

]
ζ = 0 (1.176)

where ∆ ∈ ∆ is an unknown but constant matrix and ζ contains all signals involved the
uncertain system. Under some technical assumptions and results which are not detailed here
[Iwasaki, 1998], we have the following result on robust stability.

Lemma 1.3.60 Consider the implicit system (1.176) where ∆ ∈ ∆. The following state-
ments are equivalent:
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1. Implicit system (1.176) is stable for all ∆ ∈∆.

2. for each ω ∈ R ∪ {∞}, there exists a Hermitian matrix Π(jω) such that

[C(jωI −A)−1B +D]TΠ(jω)[C(jωI −A)−1B +D] ≺ 0
∆TΠ(jω)∆ � 0, for all ∆ ∈∆

These inequalities have to be satisfied for all ω ∈ R∪{∞} and may be difficult to solve. The
reader should refer to Sections 1.3.3.1, 1.3.3 and 1.3.3.3 for more details on such parameter
dependent LMIs. On the other hand if a constant matrix Π(jω) is sought then the variable
ω can be eliminated using an extension of the Kalman-Yakubovicth-Popov lemma [Iwasaki,
1998]. Finally, the following sufficient condition, given in terms of quadratic separation, is
obtained for stability analysis of uncertain implicit systems.

Lemma 1.3.61 Consider the uncertain implicit system (1.176). If there exist P = P T and
Π ∈ Π such that 


A B
C D
I 0



T 


0 0 P
0 Π 0
P 0 0





A B
C D
I 0


 ≺ 0 (1.177)

where Π :=
{

Π : ∆TΠ∆ � 0, ∀ ∆ ∈∆
}

then the system is stable for all constant ∆ ∈ ∆
provided that there exists at least one ∆0 such that (1.176) is stable. Moreover, if P � 0 then
the system is stable for all time-varying ∆(t) ∈∆ even if there is no ∆0 such that (1.176) is
stable.

From these results we are able to provide a robust stability test for LPV systems. First
of all, let us show how parameter variations can be taken into account. Differentiating z and
w channels in (1.109) yields

ż = Cẋ+Dẇ

= CÃx+ CBw +Dẇ

ẇ = Θ̇z + Θż
(1.178)

Finally defining φ = Θ̇z we have




ẋ
ẇ

z
ż
z

Θz
Θż
Θ̇z




=




Ã B 0 0
0 0 I 0
C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I







x
w

ẇ
φ


 (1.179)

Hence letting Θ̄ = diag(Θ,Θ, Θ̇) ∈ Θ̄, ∆ =
[
I
Θ̄

]
and ζ = col(x,w, ẇ, φ,−z,−ż,−z)

then form (1.176) is retrieved; i.e.
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


Ã− sI B 0 0 0 0 0
0 −sI I 0 0 0 0
C D 0 0 I 0 0
CÃ CB D 0 0 I 0
C D 0 0 0 0 I
0 I 0 0 Θ 0 0
0 0 I −I 0 Θ 0
0 0 0 I 0 0 Θ̇







x
w

ẇ
φ

−z
−ż
−z




= 0 (1.180)

This leads to the following theorem [Iwasaki, 1998].

Theorem 1.3.62 LPV system (1.109) is robustly stable for all Θ̄ = diag(Θ,Θ, Θ̇) ∈ Θ̄ if
there exist real symmetric matrices P and Π̄ that




Ã B 0 0
0 0 I 0
C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I

I 0 0 0
0 I 0 0




T




0 0 P
0 Π̄ 0
P 0 0







Ã B 0 0
0 0 I 0
C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I

I 0 0 0
0 I 0 0




≺ 0




I 0 0
0 I 0
0 0 I

Θ(ρ) 0 0
0 Θ(ρ) 0
0 0 Θ(ρ̇)




T

Π̄




I 0 0
0 I 0
0 0 I

Θ(ρ) 0 0
0 Θ(ρ) 0
0 0 Θ(ρ̇)



� 0

(1.181)

provided that Ã is Hurwitz.

The interest of the following theorem is that the symmetric matrix P is not necessarily
positive definite and provided less conservative conditions than by considering usual positivity
requirement.

We aim at showing now that this stability condition can be interpreted in terms of a
parameter dependent Lyapunov function depending on Θ(ρ). First of all, the LPV system
(1.109) is rewritten in the compact form

ẋ = AΘx := [Ã+B(I −Θ(ρ)D)−1Θ(ρ)C]x

It is well-known that this system is stable if (I−Θ(ρ)D) is invertible for all Θ(ρ) ∈ Θ and there
exists a parameter dependent Lyapunov function V (x,Θ) = xTPΘx such that PΘ = P TΘ � 0
and

ṖΘ + PΘAΘ +ATΘPΘ ≺ 0

for all Θ ∈ Θ.
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Let NΘ be the matrix NΘ := (I−ΘD)−1ΘC such that we have w = NΘx. Differentiating
w yields

ẇ = ṄΘx+NΘẋ (1.182)

where ṄΘ = (I − ΘD)−1Θ̇(I − ΘD)−1C. Now construct a parameter dependent Lyapunov
function V (x) = xTPΘx with

PΘ =
[

I
NΘ

]T
P

[
I
NΘ

]
(1.183)

Then we have

ṖΘ =
[

0
ṄΘ

]T
P

[
I
NΘ

]
+
[

I
NΘ

]T
P

[
0
ṄΘ

]

and hence the Lyapunov inequality is given by

V̇ (x) = xT (ṖΘ +ATΘPΘ + PΘAΘ)x < 0

for all x 6= 0. Moreover note that

ẋ = AΘx

= Ãx+Bw

= (Ã+BNΘ)x
ẇ = ṄΘx+NΘAΘx

= ṄΘx+NΘ(Ãx+Bw)
=

(
ṄΘ +NΘ(Ã+BNΘ)

)
x

Hence V̇ becomes

V̇ (t) = xT

([
0
ṄΘ

]T
P

[
I
NΘ

]
+
[

I
NΘ

]T
P

[
0
ṄΘ

]
+
[

I
NΘ

]T
P

[
I
NΘ

]
(Ã+BNΘ)

+(Ã+BNΘ)T
[

I
NΘ

]T
P

[
I
NΘ

])
x < 0

= xT

([
Ã+BNΘ

ṄΘ +NΘ(Ã+BNΘ)

]T
P

[
I
NΘ

]
+
[

I
NΘ

]
P

[
Ã+BNΘ

ṄΘ +NΘ(Ã+BNΘ)

])
x < 0

The following equalities hold

[
Ã+BNΘ

ṄΘ +NΘ(Ã+BNΘ)

]
x =

[
Ã B 0
0 0 I

]

x
w
ẇ




[
I
NΘ

]
x =

[
I 0 0
0 I 0

]

x
w
ẇ




And finally we get

V̇ (t) =



x
w
ẇ



T 



ÃT 0
BT 0
0 I


P

[
I 0 0
0 I 0

]
+



I 0
0 I
0 0


P

[
Ã B 0
0 0 I

]



x
w
ẇ


 < 0

(1.184)
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It is worth noting that in the latter condition, no information is taken into account about
the parameters and their derivative. This is captured by the following static relations:

w = NΘx
= (I −ΘD)−1ΘCx

⇒ 0 = ΘCx+ (ΘD − I)w
w = Θz = Θ(Cx+Dw)

⇒ ẇ = Θ̇z + ΘCẋ+ ΘDẇ
= η + ΘCÃx+ ΘCBw + ΘDẇ

⇒ 0 = ΘCÃx+ ΘCBw + (ΘD − I)ẇ
η = Θ̇(Cx+Dw)

⇒ 0 = Θ̇Cx+ Θ̇Dw − η

where η = Θ̇z. Gathering these relations into a compact matrix form yields




ΘC ΘD − I 0 0
ΘCÃ ΘCB ΘD − I I

Θ̇C Θ̇D 0 −I







x
w
ẇ
η


 = 0 (1.185)

Then it follows that the Lyapunov inequality becomes



x
w
ẇ
η




T 





I 0
0 I
0 0
0 0


P

[
Ã B 0 0
0 0 I 0

]
+




ÃT 0
BT 0
0 I
0 0


P

[
I 0 0 0
0 I 0 0

]






x
w
ẇ
η


 < 0

(1.186)
for all signals col(x,w, ẇ, η) 6= 0 such that (1.185) holds.

Now rewrite (1.185) as a matrix product




ΘC ΘD − I 0 0
ΘCÃ ΘCB ΘD − I I

Θ̇C Θ̇D 0 −I


 =




Θ 0 0 −I 0 0
0 Θ 0 0 −I 0
0 0 Θ̇ 0 0 −I







C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I




(1.187)
It follows that the Lyapunov inequality is equivalent to (1.186) for all non zero vector

col(x,w, ẇ, η) such that




Θ 0 0 −I 0 0
0 Θ 0 0 −I 0
0 0 Θ̇ 0 0 −I







C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I







x
w
ẇ
η


 = 0

holds for some Θ̄ ∈ Θ̄ with Θ̄ = diag(Θ,Θ, Θ̇). This problem falls into the framework of the
generalized Finsler’s lemma (see Appendix E.17). It follows that the Lyapunov inequality
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feasibility is equivalent to the existence of symmetric matrices P and Π̄ such that



I 0
0 I
0 0
0 0


P

[
Ã B 0 0
0 0 I 0

]
+




ÃT 0
BT 0
0 I
0 0


P

[
I 0 0 0
0 I 0 0

]

+




C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I




T

Π̄




C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I



≺ 0

Ker






Θ 0 0 −I 0 0
0 Θ 0 0 −I 0
0 0 Θ̇ 0 0 −I





T

Π̄Ker






Θ 0 0 −I 0 0
0 Θ 0 0 −I 0
0 0 Θ̇ 0 0 −I




 � 0

hold.
The first LMI is identical to



Ã B 0 0
0 0 I 0
C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I

I 0 0 0
0 I 0 0




T




0 0 P
0 Π̄ 0
P 0 0







Ã B 0 0
0 0 I 0
C D 0 0
CÃ CB D 0
C D 0 0
0 I 0 0
0 0 I −I
0 0 0 I

I 0 0 0
0 I 0 0




≺ 0 (1.188)

while the second one is identical to



I 0 0
0 I 0
0 0 I
Θ 0 0
0 Θ 0
0 0 Θ̇




T




0 0 P
0 Π̄ 0
P 0 0







I 0 0
0 I 0
0 0 I
Θ 0 0
0 Θ 0
0 0 Θ̇



� 0 (1.189)

These LMIs (1.188) and (1.189) are equivalent to LMIs provided in Theorem 1.3.62. This
shows that the feasibility of the Lyapunov inequality implies the feasibility of LMIs of The-
orem 1.3.62. By following the development backaward, this shows that feasibility of LMIs
of Theorem 1.3.62 implies the existence of a parameter Lyapunov function V (x) = xTPΘx
where PΘ is defined in (1.183).

We have shown in this section that full-block S-procedure and well-posedness approach
are equivalent. Moreover, they embed previously presented methods such as passivity and
small-gain results. Using a variation of the well-posedness results extended to implicit systems
it has been shown that it applies in both quadratic and robust stability. Moreover, the well-
posedness allows for an explicit construction of a (parameter dependent) Lyapunov function
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proving the stability of the LPV system. It is worth noting that this Lyapunov function has
the same dependence on parameters with than the system.

In Lemma 1.3.60, the separator Π(jω) depends on the frequency variable ω and is relaxed
to a constant matrix in order to provide tractable conditions. However, this simplification
introduces some conservatism in the approach and it would be interesting to keep this depen-
dence on ω in order to characterize, in the frequency domain, additional information on the
parameters. Next sections are devoted to the introduction of methods in which constraints
in the frequency domain are allowed: the first one to be presented is the extension of the
full-block S-procedure to allow for frequency dependent scaling while the second one uses In-
tegral Quadratic Constraints (IQC) which try to confine the stability conditions into a least
conservatism domain.

1.3.4.5 Frequency-Dependent Scalings

The use of frequency-dependent scalings with full-block S-procedure is very recent and has
been proposed in [Scherer and Köse, 2007a,b]. The idea is to replace the constant D-scalings
by frequency-dependent scalings playing the role of dynamic filters, which will characterize
the uncertainties/parameters in the frequency domain. Indeed, constant D-scalings allow to
characterize the H∞ (or induced L2 norm) over the whole frequency domain and results in
conservative conditions if the parameters belong to a specific frequency domain (note that in
certain cases, D-scalings are lossless as emphasized in [Iwasaki and Hara, 1998, Packard and
Doyle, 1993] and Section 1.3.4.4 in the list of scalings).

Let us consider system (1.109) and suppose that

Θ = diag(Θ1(ρ), . . . ,Θq(ρ))

and ||Θ(ρ)||H∞ ≤ 1.
Frequency dependent D-scalings will consider the set Q of matrices structured as

Q(s) = diag(q1(s)I, . . . , qm(s)I) (1.190)

in correspondence with the structure of Θ(ρ) where the components qi are SISO transfer
functions, real valued and bounded on the imaginary axis C0. The stability of the LPV
system is then guaranteed if there exists some multiplier Q ∈ Q for which

[
H(s)
I

]∗ [
Q(s) 0

0 −Q(s)

] [
H(s)
I

]
≺ 0, Q(s) � 0 on C0 (1.191)

The key idea is to approximate any filter by a finite basis of elementary filters of the form

f1,κ(s) =
[

1 f1(s) f2(s) . . . fκ(s)
]

f2,κ(s) =
[

1 f1(s)∗ f2(s)∗ . . . fκ(s)∗
] (1.192)

where f1,κ(s) and f2,κ(s) are respectively stable and anti-stable rows with f(s)∗ = f(−s)T . Let
us recall that an anti-stable transfer function has all its poles in C+. Hence for sufficiently large
κ any filter stable (anti-stable) can be uniformly approximated on C0 by f1,κ(s)l1 (f2,κ(s)l2)
for suitable real-valued columns vectors l1 (l2) (see [Boyd and Barrat, 1991, Pinkus, 1985,
Scherer, 1995]). This implies that Q(s) can be approximated by

Ψ1(s)∗MΨ1(s) = Ψ2(s)∗MΨ2(s) (1.193)
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where Ψj := diag(I ⊗ fTj,κ, . . . , I ⊗ fTj,κ) and M is a symmetric matrix such that M :=
diag(I ⊗M1, . . . , I ⊗Mm) in which the M i’s have to be determined.

We give here the main stability result which has been initially introduced in [Scherer and
Köse, 2007a,b]:

Theorem 1.3.63 A is stable and (1.191) holds for Q represented as (1.193) if and only if
the following LMIs are feasible:




I 0
Ap Bp
Cp Dp



T 


0 X 0
? 0 0
? ? diag(M,−M)






I 0
Ap Bp
Cp Dp


 ≺ 0 (1.194)




I 0
AΨ1 BΨ1

CΨ1 DΨ1



T 


0 Y 0
? 0 0
? ? M






I 0
Ap Bp
Cp Dp


 � 0 (1.195)

[
X11 − Y X13

? X33

]
� 0 (1.196)

where
[
AΨ1 BΨ1

CΨ1 DΨ1

]
is a minimal realization of Ψ1 and

[
Ap Bp
Cp Dp

]
:=




AΨ1 0 BΨ1C D
0 AΨ2 0 BΨ2

0 0 A B

CΨ1 0 DΨ1 DΨ1D
0 CΨ2 0 DΨ2




(1.197)

is a minimal realization of
[

Ψ1G
Ψ2

]
.

The idea in this approach is to choose a basis of transfer functions on which the matrix
Q(s) will be approximated. The conservatism of the approach thus depends on the complexity
(the completeness) of the basis and on the type of scalings used (here D scalings). This result
is very near results based on integral quadratic constraints which are presented in the next
section.

1.3.4.6 Analysis via Integral Quadratic Constraints (IQC)

This section is devoted to IQC analysis and is provided for informative purposes only [Rantzer
and Megretski, 1997]. The key ideas, which are very similar to the well-posedness and full-
block S-procedure, are briefly explained hereafter.

The central idea of the IQC framework is identical to the well-posedness: the loop signals
must be uniquely defined by the inputs and for bounded energy inputs, we have bounded
energy loop signals (L2 internal stability). The first step is to define any blocks and signals
involved in the interconnection by means of integral quadratic constraints of the form

∫ +∞

−∞

[
w(t)
z(t)

]T (
Mq

[
w(t)
z(t)

])
dt ≥ 0 (1.198)
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where Mq is a bounded self-adjoint operator on the L2 space.
With such an IQC, it is possible to capture and characterize many behaviors of operators

and signals (see [Rantzer and Megretski, 1997] for a nonexhaustive list of such IQCs). Using
Parseval equality (see Appendix E.22), the latter IQC has a frequency dependent counterpart

∫ +∞

−∞

[
ẑ(jω)
ŵ(jω)

]∗
Mq(jω)

[
ẑ(jω)
ŵ(jω)

]
dω ≥ 0 (1.199)

where ẑ and ŵ denote respectively the Fourier transform of z and w.
The aim of the IQC is to study stability of interconnected systems by constraining all

signals and operators involved in the interconnection using IQCs, expressed as well in the
frequency domain as in the time-domain. These IQCs include extra degree of freedom and
this is the reason why the larger the number of IQCs is, the smaller the conservatism is.
Moreover, it is worth noting that a wide class of operators and signals can be characterized
using IQC: periodic signals, constant signals, norm-bounded operators, constant and time-
varying uncertainties, static nonlinearities or even operators with memory (such as delay
operators). . .

Example 1.3.64 Let us consider the LPV system under ’LFT’ form:

ẋ(t) = Ax(t) +Bw(t)
z(t) = Cx(t) +Dw(t)
w(t) = Θ(t)z(t)

where Θ(t) is a diagonal matrix gathering the parameters involved in the system. According
to the type of set where the parameters evolve, it is possible to define an IQC to define such
sets. For instance, if the parameters evolve within the internal [−α, α], then the signals w
and z satisfy the following IQC

∫ +∞

−∞

[
z(θ)
w(θ)

]T [
α2Q 0

0 −Q

] [
z(θ)
w(θ)

]
dθ

for some Q = QT ≺ 0. More generally, we can retrieve the results of the full-block S-procedure
by considering that the values of parameter matrix Θ(ρ) evolve within an ellipsoid, i.e. if we
have [

I
Θ(ρ)

]T [
Q S
ST R

] [
I

Θ(ρ)

]
≺ 0

By pre and post multiplying the latter inequality by z(t)T and z(t) and noting that w(t) =
Θ(ρ)z(t) we have [

z(t)
w(t)

]T [
Q S
ST R

] [
z(t)
w(t)

]
≺ 0

Taking the integral from −∞ to +∞ we get

∫ +∞

−∞

[
z(t)
w(t)

]T [
Q S
ST R

] [
z(t)
w(t)

]
dt ≺ 0

which is an IQC corresponding to the supply-rate of full-block S-procedure approach or the
multiplier used in the well-posedness approach.
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Once all signals and operators have been defined through IQCs, then by invoking the
Kalmna-Yakubovicth-Popov lemma (see Appendix E.3), it is possible to obtain a LMI where
the sum of all IQC’s are present. The methodology is illustrated hereafter by considering the
stability analysis of a LPV system.

Let us consider system (1.109) with transfer function H mapping w to z. We assume that
signals z and w satisfy all the following IQCs:

∫ +∞

−∞

[
ẑ(jω)
ŵ(jω)

]∗
Πq(jω)

[
ẑ(jω)
ŵ(jω)

]
dω ≥ 0 (1.200)

for all q = 1, . . . , N when Πq(jω) are Hermitian frequency dependent matrices defining the
IQC’s. In this case, there exist matrices Ã, B̃, C̃ and a set of symmetric real matrices
M1, . . . ,MN to be determined such that
[
H(jω)
I

]∗
Πq(jω)

[
H(jω)
I

]
=
[
C̃(jωI − Ã)−1B̃

I

]∗
Mq

[
C̃(jωI − Ã)−1B̃

I

]
(1.201)

for all q = 1, . . . , N . By application of the Kalman-Yakubovitch-Popov Lemma (see appendix
E.3 and references [Rantzer, 1996, Scherer and Wieland, 2005, Willems, 1971, Yakubovitch]),
it follows that there exists a matrix P = P T � 0 such that

[
ÃTP + PÃ PB̃

? 0

]
+

N∑

i=1

[
C̃T 0
0 I

]
Mq

[
C̃ 0
0 I

]
≺ 0 (1.202)

For instance, let N = 1 and define Π1 =
[
−M 0

0 M

]
where M = MT � 0 is a matrix to

be determined. If all the parameters ρ take values in the interval [−1, 1] and signals w and z
are defined such that w = Θ(ρ)z. Then it is clear that

∫ +∞

−∞

[
z(jω)
w(jω)

]∗
Π1

[
z(jω)
w(jω)

]
dω ≥ 0 (1.203)

Thus Π1 defines an IQC for the loop signals z and w. Since Π1 does not depend on the
frequency then (Ã, B̃, C̃) = (A,B,C) and hence we get the LMI

[
ATP + PA PB

BTP 0

]
+
[
CT 0
0 I

] [
M 0
0 −M

] [
C 0
0 I

]
≺ 0 (1.204)

which is equivalent to the existence of P = P T � 0 and M̃ = M̃ � 0 such that


ATP + PA PB CTM

BTP −M 0
MC 0 −M


 ≺ 0 (1.205)

We recognize above the scaled-bounded real lemma and this points out that results ob-
tained from full-block multipliers and well-posedness can be retrieved with an appropriate
choice of the multipliers Πq(jω) (see for instance [Rantzer and Megretski, 1997]). The main
difference between the full-block S-procedure extended to frequency dependent D-scalings
and the IQC approach resides in the choice of the filters: Q(s) and Π(jω) for respectively the
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full-block S-procedure and the IQC analysis. In the full-block S-procedure a basis is chosen
and a suitable filter is computed by SDP while in the IQC framework the filter is computed
by hand and then degrees of freedom are inserted in the IQCs. It is worth mentioning that,
at this stage, only D-scalings have been extended to depend on the frequency but one can
easily imagine to extend a more general case of scalings leading then to a framework, closer
to IQC analysis. It is worth noting that filters initially computed for IQC can be used in the
full-block S-procedure and each one of these would be an element of the basis, and in this
case, both methods would be equivalent.

This ends the part on stability analysis of LPV systems in ’LFT’ formulation. Several
methods have been presented and relations between results emphasized. The methods provide
less and less conservative results and the latter ones are promising. It is important to note
that while IQC analysis is currently one of the most powerful for stability analysis, it is
generally difficult to derive stabilization conditions in terms of LMIs without restricting too
much the type of IQC. On the other hand, the full-block S-procedure is well-dedicated to
LPV control of LPV systems as emphasized in [Scherer, 2001, Scherer and Köse, 2007a] and
always results in LMI conditions.

1.4 Chapter Conclusion

This chapter has provided an overview of LPV systems. First of all, a precise definition
of parameters is given and several classes of parameters have been isolated: discontinuous,
continuous and smooth continuous parameters. It is highlighted that some classes enjoy
nice properties which can be exploited to provide more precise stability and synthesis tools,
leading, for instance, to different notions of stability.

Secondly, three types of LPV systems are presented: polytopic LPV systems, polynomial
LPV systems and ’LFT’ systems. While the first one is particularly adapted for systems with
a linear dependence on the parameters, it leads generally to a conservative representation of
systems with non-affine parameter dependence. Examples are given to show the interest of
such a representation. On the second hand, polynomial systems are better suited to deal with
more general representation excluding rational dependence. Finally, ’LFT’ systems are the
most powerful representation since they allow to consider any type of parameter dependence,
including rational relations.

Thirdly, stability analysis techniques for each type of LPV systems are presented. It
is shown that LMIs have a crucial role in stability analysis of LPV systems. Indeed, they
provide an efficient and simple way to deal with the stability of LPV systems as well as for
LTI systems. However, due to the time-varying nature of LPV systems the LMIs are also
parameter-varying and hence more difficult to verify.

It has been shown that in the polytopic framework this infinite set of LMIs can be equiva-
lently characterized by a finite set by considering the LMI at the vertices of the polytope only.
This is a powerful property that makes the polytopic approach widely used in the literature.

On the other hand, when considering polynomial systems LMIs are far more complicated:
they include infinite-dimensional decision variables (decision variables which are functions)
and we are confronted to parameter dependent LMIs. In this case, relaxations play a central
role in order to reduce this computationally untractable problem into a tractable one. First of
all, infinite-dimensional variables are projected over a chosen basis (generally polynomial) in
order to bring back the problem to a finite-dimensional one. Since the parameter dependence



1.4. CHAPTER CONCLUSION 77

is nonlinear, it is not sufficient in this case to consider the LMI at the vertices of the set of the
parameters, except for very special cases. This is why several methods have been developed to
relax this part, namely the gridding, Sum-of-Squares and polynomial optimization approaches.
The first one proposes to grid the space of parameters and to consider the LMI at these
points only. Although simple, this method is shown to be computationally very expensive
and very imprecise: it is possible to find systems for which the instability cannot be proved
but these systems are not dense in the set of all unstable systems. The second one, is
based on recent results on Sum-of-Squares polynomials and is very efficient but may be very
computationally expensive. The third one is based on the application of a recent result on
polynomial optimization problems solved by a sequence of LMI relaxations. The two latter
methods are in fact equivalent but considers different frameworks.

Finally, stability analysis of LPV systems under ’LFT’ form is developed. Several ap-
proaches are presented and the different results are linked between each others using under-
lying theories and by emphasizing that same results can be obtained using them. Passivity,
small-gain and scaled-small gain results are described and generalized through the full-block
S-procedure and the dissipativity framework. The well-posedness approach based on topolog-
ical separation is then shown to be equivalent to the full-block S-procedure . A generalization
of the full-block S-procedure involving frequency-dependent scalings is then provided and is
put in contrast with the IQC approach which consider Integral Quadratic Constraints in order
to specify the types of signals involved in the interconnection.





Chapter 2

Overview of Time-Delay Systems

Time-delay systems are a particular case of infinite dimensional systems in which the
current evolution of the state is affected not only by current signal values but also by past

values, which justifies the denomination of hereditary systems. Such systems have suggested
more and more attention these past years due to their applicability to communication networks
and many large scale systems. The other interest of time-delay resides in their ability to model
transport, diffusion, propagation phenomena [Niculescu, 2001]. These systems can be viewed
as an approximation of distributed systems governed by partial differential equations. For
instance, it has been shown that the Dirichlet’s control problem (boundary control of systems
governed by partial differential equations) can be approximated by a delay differential systems;
see for instance Hayami [1951], Moussa [1996], Niculescu [2001].

This chapter provides some background on time-delay systems, mainly on stability anal-
ysis. The chapter will focus especially on the stability analysis of delay differential equations
using several modern techniques such as Lyapunov-Krasovskii functionals, the interconnection
of systems and Integral Quadratic Constraints (IQC).

Section 2.1 will provide different models of representation for time-delay systems where
especially functional differential equations are detailed. Among this representation, several
types of time-delay systems are isolated, depending on the type of delays (constant or time-
varying) and how they act on system signals.

Section 2.2 is devoted to stability analysis of time-delay systems. Indeed, this greater
and greater attention has led to a large arsenal of techniques for modeling, stability analysis
and control design that need to be introduced to give a wide (but incomplete) panorama of
the whole field. Only key and original results will be explained due to space limitations and
redundant approaches will be avoided. Indeed, many results, although formulated differently,
are completely equivalent and in this case a single version will be provided with references to
equivalent approaches.

For completeness, Appendix I is devoted to determine properties of controllability/stabilizability
and observability/detectability of time-delay systems. Here also, as for LPV systems, the no-
tions of controllability and observability may be defined in different ways.

The readers discovering the field of time-delay systems are heavily encouraged to read
this chapter carefully to get the necessary background to read this thesis. The interested
or thirsted of knowledge readers will find several references in each section to deepen their
understanding of the domain.

Most of this chapter is based on the books [Gu et al., 2003, Kolmanovskii and Myshkis,

79
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1999, Niculescu, 2001] and several published papers which will be cited when needed.

2.1 Representation of Time-Delay Systems

Three different representations are commonly used for modeling time-delay systems:

1. Differential equation with coefficients in a ring of operators: This framework has been
developed early to study time-delay systems in Conte and Perdon [1995, 1996], Conte
et al. [1997], Kamen [1978], Morse [1976], Perdon and Conte [1999], Picard and Lafay
[1996], Sename et al. [1995].

A linear time-delay system is governed by a following linear differential equation with
coefficient in a module, e.g.

ẋ(t) = A(∇)x(t) (2.1)

where in the general case ∇ = coli(∇i) is the vector of delay operators such that
x(t − hi) = ∇ix(t). In this case, the coefficient of the A matrix is a multivariate
polynomial in the variable ∇.

Since the inverse of ∇ (the predictive operator x(t+ hi) = ∇−1
i x(t)) is undefined from

a causality point of view, the operators ∇ of the matrix A belong, indeed, to a ring.

2. Differential equation on an infinite dimensional abstract linear space: This type of
representation stems from the application of infinite dimensional systems theory to the
case of time-delay system.

Let us consider system
ẋ(t) = Ax(t) +Ahx(t− h) (2.2)

where h is the delay and x is the system state.

This system is completely characterized by the state

x̃ =
[
x(t)
xt(s)

]

for all s ∈ [−h, 0] and xt(s) = x(t+ s). The state-space is then the Hilbert space

Rn × L2([−h, 0],Rn)

One can easily see that the state of the system contains a point in an Euclidian space x(t)
and a function of bounded energy , xt(s), the latter belonging to an infinite dimensional
linear space. This motivates the denomination of ’Infinite Dimensional Abstract Linear
Space’ [Bensoussan et al., 2006, Curtain et al., 1994, Iftime et al., 2005, Meinsma and
Zwart, 2000].

In that state space, the system rewrites

d

dt

[
y(t)
xt(·)

]
= A

[
y(t)
xt(·)

]
(2.3)

where the operator A is given by

A
[
y(t)
xt(·)

]
=



Ay(t) +Ahxt(−h)

dxt(θ)
dθ


 (2.4)
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The operator A is the infinite dimensional counterpart of the finite dimensional operator
A in linear systems described by ẋ = Ax, and many tools involved in the theory of
finite dimensional systems have been extended to infinite dimensional systems (e.g. the
exponential of matrix, the fundamental matrix or also the explicit solution). The readers
should refer to [Bensoussan et al., 2006] to get more details on infinite dimensional
systems and a complete characterization of time-delay systems as systems in a Banach
functional space.

3. Functional Differential equation: evolution in a finite Euclidian space or in a functional
space.

Since only functional differential equations will be used throughout this thesis, only this
one will be deeper explained.

2.1.1 Functional Differential Equations

The most spread representation is by the mean of functional differential equations [Bellman
and Cooke, 1963, Gu et al., 2003, K.Hale and Lunel, 1991, Kolmanovskii and Myshkis, 1962,
Niculescu, 2001]: several types of time-delay systems can be considered according to the
worldly accepted denomination introduced by Kamenskii [Kolmanovskii and Myshkis, 1999]:

1. System with discrete delay acting on the state x, inputs u or/and outputs y, e.g.

ẋ(t) = Ax(t) +Ahx(t− hx) +Bu(t) +Bhu(t− hu)
y(t) = Chx(t− hy)

where hx, hu and hy are respectively the delay state, the input delay and the measure-
ment delay.

2. Distributed delay systems where the delay acts on state x or inputs u in a distributed
fashion, e.g.

ẋ(t) = Ax(t) +
∫ 0

−hx

Ah(θ)x(t+ θ)dθ +Bu(t) +
∫ 0

−hu

Bh(θ)x(t+ θ)dθ

3. Neutral delay systems where the delay acts on the higher-order state-derivative, e.g.

ẋ(t)− Fẋ(t− h) = Ax(t)

The following paragraphs are devoted to a brief emphasis of the difference between these
classes of systems through illustrative application examples. These examples are borrowed
from [Briat and Verriest, 2008, Kolmanovskii and Myshkis, 1999, Niculescu, 2001, Verriest
and Pepe, 2007].

Systems with discrete delays

Systems with discrete delays are systems which locally remember past signals values,
at some specific past time instants. An interesting example presented in [Niculescu, 2001]
considers an irreversible chemical reaction producing a material B from a material A. Such
a reaction is never instantaneous and never complete and in order to resolve enhance the
quantity of reacted products, a classical technique is to use a recycle stream. The streaming
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process does not take place instantaneously and the whole process (i.e. reaction + streaming)
can be modeled by a system of nonlinear delay differential equations with discrete delay:

Ȧ(t) =
q

V
[λA0 + (1− λ)A(t− τ)−A(t)]−K0e

−Q
T A(t)

Ṫ (t) =
1
V

[λT0 + (1− λ)T (t− τ)− T (t)]
∆H
Cρ
−K0e

−Q
T A(t)− 1

V Cρ
U(T (t)− Tw)

(2.5)

where A(t) is the concentration of the component A, T (t) is the temperature (A0, T0 corre-
spond to these values at initial time t = 0) and λ ∈ [0, 1] is the recycle coefficient, (1− λ)q is
the recycle flow rate of the unreacted A and τ is the transport delay. The others terms are
constant of the system.

Economic behaviors are other applications of functional differential equations [Belair and
Mackey, 1989, Kolmanovskii and Myshkis, 1999, 1962, Niculescu, 2001]. For instance, the
following discrete delay model has been used for describing interactions between consumer
memory and price fluctuations on commodity market:

ẍ(t) +
1
R
ẋ(t) + ẋ(t− τ) +

Q

R
x(t) +

1
R
x(t− τ) = 0 (2.6)

where x denotes the relative variation of the market price of the commodity in question and
Q,R, τ are parameters of the model. In particular, τ is the time that must elapse before a
decision to alter production is translated into an actual change in supply.

Actually, this model is obtained by differentiating the following dynamical model involving
a distributed delay:

ẋ(t) +
Q

R

∫ 0

−∞
e−θ/Rx(t+ θ)dθ + x(t− τ) = 0

Note that this operation cannot be always performed, more details on this procedure can be
found for instance in [Verriest, 1999].

Other applications of time-delay systems with discrete delays arise in heat exchanger
dynamics, traffic modeling, teleoperation systems, networks such as internet, modeling of
rivers,population dynamics. . . Delays also appear in neural networks, any systems with delayed
measurement, system controlled by delayed feedback and in this case, delays are a consequence
of technological constraints.

The reader should refer to the following papers/books and references therein to get more
details on pointwise delay systems:

Stability analysis: [Bliman, 2001, Chiasson and Loiseau, 2007, Fridman and Shaked, 2001,
Gouaisbaut and Peaucelle, 2006b, Goubet-Batholoméus et al., 1997, Gu et al., 2003,
Han, 2005a, 2008, Han and Gu, 2001, He et al., 2004, Jun and Safonov, 2001, Kao
and Rantzer, 2007, K.Hale and Lunel, 1991, Kharitonov and Melchor-Aguila, 2003,
Kharitonov and Niculescu, 2003, Kolmanovskii and Myshkis, 1962, Michiels and Niculescu,
2007, Moon et al., 2001, Niculescu, 2001, Park et al., 1998, Richard, 2000, Sipahi and
Olgac, 2006, Xu and Lam, 2005, Zhang et al., 1999, 2001]

Control Design: [Ivanescu et al., 2000, Meinsma and Mirkin, 2005, Michiels and Niculescu,
2007, Michiels et al., 2005, Mirkhin, 2003, Mondié and Michiels, 2003, Niculescu, 2001,
Seuret et al., 2008, Suplin et al., 2006, Verriest, 2000, Verriest et al., 2002, Verriest and
Pepe, 2007, Verriest et al., 2004, Witrant et al., 2005, Wu, 2003, Xie et al., 1992, Xu
et al., 2006]
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Observers: [Darouach, 2001, Fattouh, 2000, Fattouh et al., 1999, 2000a, Germani et al.,
2001, Sename, 2001]

Distributed delay Systems

Distributed delay systems are systems where the delay has not a local effect as in pointwise
delay systems but in a distributed fashion over a whole interval. For instance, consider the
following SIR-model [Anderson and May, 2002, 1982, Hethcote, 2002, Van den Driessche,
1999, Wickwire, 1977] used in epidemiology [Briat and Verriest, 2008]

Ṡ(t) = −βS(t)I(t)

İ(t) = βS(t)I(t)− β
∫ ∞

h
γ(τ)S(t− τ)I(t− τ)dτ

Ṙ(t) = β

∫ ∞

h
γ(τ)S(t− τ)I(t− τ)dτ

(2.7)

where S is the number of susceptible people, I the number of infectious people and R the
number of recovered people. The distributed delay here taking value over [h,+∞] is the time
spent by infectious people before recovering from the disease. This delay me be different from
a individual to another but obeys a probability density represented by γ(τ) which tends to 0
at infinity and whose integral over [−∞,−h] equals 1. It is assumed here that once recovered
from the disease, people become resistant and therefore remain within the set of recovered
people. It can be easily shown that Ṡ + Ṙ + İ = 0, showing that the system is Hamiltonian
(energy preserving) and hence stable.

Another example of systems governed by distributed delay differential equations are
combustion models [Crocco, 1951, Fiagbedzi and Pearson, 1987, Fleifil et al., 1974, 2000,
Niculescu, 2001, Zheng and Frank, 2002] involved in propulsion and power-generation. Delay
in such models can have destabilizing effects but it has been shown these recent years that this
delay can be used in advantageous manner. The following example is taken from [Niculescu,
2001, Niculescu et al., 2000].

ẍ(t) + 2ζωẋ(t) + ω2
i x = c1x(t− τc)− c2

∫ t−τc

0
x(ξ)dξ (2.8)

For more details and some results on systems with distributed delays, the readers should
refer to [Chiasson and Loiseau, 2007, Fattouh et al., 2000b, Fiagbedzi and Pearson, 1987,
Fridman and Shaked, 2001, Gu et al., 1999, 2003, Ivanescu et al., 1999, K.Hale and Lunel,
1991, Kolmanovskii and Richard, 1997, Niculescu, 2001, Richard, 2000, Tchangani et al., 1997,
Verriest, 1995, 1999, Zheng and Frank, 2002] and references therein.

Neutral Delay Systems

Finally, neutral delay systems, arising for instance in the analysis of the coupling between
transmission lines and population dynamics, are systems where discrete delays act on the
higher order derivative of the dynamical system. (See [Brayton, 1966, K.Hale and Lunel,
1991, Kuang, 1993]. The origin of the term ’neutral’ is unclear while the other terms are easy
to understand.

An example of dynamical system governed by neutral delay equation is the evolution
of forests. The model is based on a refinement of the delay-free logistic (or Pearl-Verhulst
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equation) where effects as soil depletion and erosion have been introduced

ẋ(t) = rx(t)
[
1− x(t− τ) + cẋ(t− τ)

K

]
(2.9)

where x is the population, r is the intrinsic growth rate and K the environmental carrying
capacity. See Gopalsamy and Zhang [1988], Pielou [1977], Verriest and Pepe [2007] for more
details.

For more details on neutral delay systems, please refer to [Bliman, 2002, Brayton, 1966,
Fridman, 2001, Gopalsamy and Zhang, 1988, Han, 2002, 2005b, K.Hale and Lunel, 1991,
Kolmanovskii and Myshkis, 1962, Niculescu, 2001, Picard et al., 1998, Verriest and Pepe,
2007] and references therein.

Amongst all these types of time-delay systems, the current thesis focuses on time-delay
systems with discrete-delays, especially on the state but some applications to systems with
delay on the input and distributed delays will be provided.

2.1.2 Constant Delays vs. Time-Varying Delays and Quenching
Phenomenon

In the latter examples of time-delay systems represented in term of a functional differential
equations, the delay is assumed to be constant. In some applications (networks, sampled-data
control. . . ) the delay is time-varying, making the system non-stationary. At first sight, it
may appear as a technical detail but, actually, it leads to a complicated phenomena called
’Quenching’ (see [Louisell, 1999, Papachristodoulou et al., 2007]). Indeed, there is a gap
between constant and time-varying delays and it is possible to find systems which are stable
for constant delay h ∈ [h1, h2] but unstable for time-varying delay belonging to the same
interval. In such a phenomenon, the bound on the delay derivative plays an important role
and remains still partially unexplained (some clues are provided in [Kharitonov and Niculescu,
2003, Papachristodoulou et al., 2007]).

In some systems, the delay may be a known function of time or some parameters. More-
over, methods to estimate the delay in real time are currently developed; see for instance
[Belkoura et al., 2007, 2008, Drakunov et al., 2006, Veysset et al., 2006]. In these cases, it is
imaginable to use this information to study stability and design specific control laws.

It is also possible to define systems in which the delay is a function of the state. This
makes the stability analysis of the system extremely harder and only very few (uncomplete)
results have been provided on that topic. See for instance [Bartha, 2001, Feldstein et al.,
2005, Louihi and Hbid, 2007, Luzianina et al., 2000, 2001, Verriest, 2002, Walther, 2003] and
references therein.

2.2 Stability Analysis of Time-Delay Systems

The stability analysis of time-delay systems is a very studied problem and has led to lots of
approaches which can be classified in two main framework: the frequency-domain and time-
domain analysis [Gu et al., 2003, Niculescu, 2001]. While the first one deals with characteristic
quasipolynomial of the system, the second one considers directly the state-space domain and
matrices. Before entering in more details, some preliminary definitions are necessary.
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Definition 2.2.1 If a time-delay system is stable for any delay values belonging to R+, the
system is said to be delay-independent stable.

Example 2.2.2 A delay-independent stable time-delay system with constant time-delay is
given by

ẋ(t) =
[
−5 1
0 −5

]
x(t) +

[
−1 0
1 −2

]
x(t− h) (2.10)

It seems obvious that if a system is delay-independent stable, then it must be stable for
h = 0 and h → +∞ which means that A and A + Ah in (2.2) must be Hurwitz stable (all
the eigenvalues lie in the open left-half plane). On the second hand, for any value of h from
0 to +∞), the system must be stable too. It is shown in Appendix G.3 that a supplementary
sufficient condition is given by

ρ̄[(jω −A)−1Ah] < 1, ∀ω ∈ R

where ρ̄(·) denotes the spectral radius (i.e. maxi |λi(·)|).
By verifying these conditions we find

λ(A) = {−5,−5}

λ(A+Ah) =

{
−13±

√
3

2

}

ρ̄[(jω −A)−1Ah] ∼ 0.4739 < 1

The system is confirmed to be delay-independent stable.

The term ’delay-independent stable’ has been introduced for the first time in [Kamen
et al., 1985] and has become commonly used in the time-delay community.

Definition 2.2.3 If a time-delay system is stable for all delay values belonging to a subspace
D $ R+ then the system is said to be delay-dependent stable.

Example 2.2.4 A well-known system being delay-dependent stable [Gouaisbaut and Peau-
celle, 2006b] is given by

ẋ(t) =
[
−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(t− h) (2.11)

and is stable for any constant delay belonging to [0, 6.17].To see this note that A+Ah is Hurwitz
and hence the system is stable for zero delay. On the other hand, A−Ah is not Hurwitz (has
eigenvalues {−1, 0.1}) and shows that for some values of the delay the system has positive
eigenvalues. This is explained further in the Appendix G which deals with quasipolynomials.

When the lower bound of the interval of delay is 0, the term ’delay-margin’ is often referred
to the upper bound of the interval. It is possible to find systems for which the lower bound
of the interval is non zero.
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Figure 2.1: Stability regions of system (2.13) w.r.t. to delay values

Example 2.2.5

ẋ(t) =
[

0 1
−2 0.1

]
x(t) +

[
0 0
1 0

]
x(t− h) (2.12)

This system is not stable for h = 0 since the matrix A + Ah is not Hurwitz. Indeed, in
[Gouaisbaut and Peaucelle, 2006a, Gu et al., 2003], it is shown that the system is stable for
all constant delay in the interval [0.10016826, 1.7178].

Other systems may exhibit (almost) periodicity in the intervals of stability: there exists
a (finite or infinite) countable sequence of disjoint intervals for which the system is stable.
Such a behavior most often occurs in systems with several delays.

Moreover, in the case of multiple delay systems the stability map (the set of delays for
which the system is stable) can be very complicated as presented for instance in [Knospe and
Roozbehani, 2006, Sipahi and Olgac, 2005, 2006]. The following example is borrowed from
[Knospe and Roozbehani, 2006].

Example 2.2.6 Let us consider the system with 2 delays

ẋ(t) =
[
−3.0881 2.6698
−9.7383 2.8318

]
x(t)+

[
0.5645 0.0178
1.2597 0.8020

]
x(t−h1)+

[
0.4176 0.0144
0.9432 0.5976

]
x(t−h2)

(2.13)
The stability map for this system is depicted on Figure 2.1. On this figure, it is possible to

see that the there are notches which show that the stability set is not as regular as for system
with single delay. The boxes are approximations of the stability set obtained using method of
[Knospe and Roozbehani, 2006].

In the case of time-varying delays, the stability may depend or not on the rate of variation
of the delay (the derivative of the delay) and in these cases, a similar vocabulary has been
introduced.

Definition 2.2.7 For a stable time-delay system with time-varying delays, if the stability
depends on the rate of variation, then the system is said to be rate-dependent stable.
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Definition 2.2.8 For a stable time-delay system with time-varying delays, if the stability
does not depend on the rate of variation, then the system is said to be rate-independent stable.

In most of the cases the bound on the rate of variation of the delay is closely related to
the delay-margin, the greater the absolute value of the rate is, the lower the delay-margin will
be. Papachristodoulou et al. [2007] have shown that system

ẋ(t) = −x(t− h(t)) (2.14)

is unstable for a delay-rate bound greater than approximately 0.86 even though for a constant
delay, the system is stable for h < π/2.

In [Kharitonov and Niculescu, 2003], analytical methods are provided to deal with uncer-
tain delays around a fixed constant one. With such an approach it is possible to quantify and
give bounds on the variation of the delay. For instance, the relevant example considered in
Kharitonov and Niculescu [2003]

ẋ(t) =
[

0 1
−1 −2

]
x(t) +

[
0 0
−1 −1

]
x(t− h(t)) (2.15)

is stable for a delay equal to 1. Using the method of [Kharitonov and Niculescu, 2003] where
the time-varying delay is written as

h(t) = h0 + η(t) ḣ(t) = η̇(t) (2.16)

it is shown that the stability is preserved for every |η(t)| ≤ η0 and |η̇(t)| ≤ η̇0 such that

η0 <
1

640
µ0 η̇0 < 1− 8µ0

with µ0 ∈ (0, 1/40). From these inequalities we can see that the larger η̇0 is, the smaller
η0 must be to preserve stability. This illustrates the effect of a time-varying delay on the
stability of time-delay systems.

2.2.1 Time-Domain Stability Analysis

Several frequency domain approaches have been provided and allow for more or less easy
stability analysis of time-delay systems with constant delay. These methods cannot be applied
for systems with time-varying delays or even for time-varying systems, uncertain systems
with time-varying uncertainties and nonlinear systems (except locally). The idea now is
to exploit state-space approaches to analyze stability which have a wider field of action.
Many approaches have been developed these past years and amongst them, the extension of
Lyapunov theory and Lyapunov functions play a central role.

This section is devoted to a presentation of many time-domain approaches. On the first
hand, the extensions of Lyapunov theory through the celebrated Lyapunov-Krasovskii and
Lyapunov-Razumikhin theorems are introduced. On the second hand, an historical review is
developed in which the use of model transformations is introduced and justified. The concept
of additional dynamics is then shown as a consequence of model transformations and as a
limitation of some approaches. Still in the context of model transformations, the problem of
bounding cross-terms is explained and solved in different manners exposed chronologically.
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To conclude on the part on extensions of Lyapunov’ theory, recent results does not involving
model transformations are provided.

Finally more ’exotic’ stability tests not directly based on extension of Lyapunov’s theory
but relying on well-posedness theory, Integral Quadratic Constraint theory or even small-gain
theorems are introduced as an opening to new promising methods.

Remark 2.2.9 All the definitions of stability of finite-dimensional systems given in Appendix
B.4 can be generalized to time-delay systems by introducing the continuous norm || · ||c defined
by

||φ||c := max
a≤θ≤b

||φ(θ)||2 (2.17)

where φ ∈ C([a, b],Rn).

2.2.1.1 On the extension of Lyapunov Theory

Throughout this part, we will focus on the stability analysis of the general single delayed
system

ẋ(t) = f(xt, t)
xt0 = φ

(2.18)

where xt(θ) = x(t + θ) and φ ∈ C([−h, 0],R) is the functional initial condition. We also
assume that x(t) = 0 identically is a solution to (2.18), that will be referred to as the trivial
solution.

As in the study of systems without delay, the Lyapunov method is an effective approach.
For a system without delay, this consists in the construction of a Lyapunov function V (t, x(t)),
which is some sense is a potential measure quantifying the deviation of the state x(t) from the
trivial solution 0. Since, for a delay-free system, x(t) is needed to specify the system future
evolution beyond t, and since in a time-delay system the ’state’ at time required for the same
purpose is the value of x(θ) in the interval θ ∈ [t − h, t] (i.e. xt), it is natural to expect
that for a time-delay system, the corresponding Lyapunov function be a functional V (t, xt)
depending on xt, which also should measure the deviation of xt from the trivial solution 0.
Such a functional is known as the Lyapunov-Krasovskii functional.

More specifically, let V (t, φ) be differentiable, and let xt(τ, φ) be a solution of (2.18) at
time t with the initial condition xτ = φ. We may calculate the derivative of V (t, xt) with
respect to t and evaluate it at t = τ . This gives rise to

V̇ (τ, φ) =
d

dt
V (t, xt)

∣∣∣∣
t=τ, xt=φ

= lim sup∆t→0

1
∆t

[V (τ + ∆t, xt+∆t(τ, φ))− V (τ, φ)]
(2.19)

Intuitively, a nonpositive V̇ indicates that xt does not grow with t, which in turn means
that the system under consideration is stable in light of remark 2.2.9. The more precise
statement of this observation is the following theorem.

Theorem 2.2.10 (Lyapunov-Krasovskii Stability Theorem) Suppose f : R×C[−h, 0] →
Rn in (2.18) maps R × (bounded sets of C[−h, 0]) into bounded sets of Rn, and u, v, w :
R̄+ → R̄+ are continuous nondecreasing functions, u(s) and v(s) are positive for s > 0, and
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u(0) = v(0) = 0. If there exists a continuous differentiable functional V : R × C → R such
that

u(||φ(0)|| ≤ V (t, φ) ≤ v(||φ||c)
and

V̇ (t, φ) ≤ −w(||φ(0)||)
then the trivial solution of (2.18) is uniformly stable. If w(s) > 0 for s > 0, then it is
uniformly asymptotically stable. If, in addition, lims→+∞ u(s) = +∞, then it is globally
uniformly asymptotically stable.

In the special case of linear time-delay systems, it is possible to give a generic ’complete’
Lyapunov-Krasovskii functional (see [Fridman, 2006a, Gu et al., 2003, Papachristodoulou
et al., 2007] and references therein). The term ’complete’ means that, if computed exactly, it
provides necessary and sufficient conditions to the delay-dependent stability for such systems.
Let us consider the following linear time-delay system:

ẋ(t) = Ax(t) +Ahx(t− h)
x(θ) = φ(θ), θ ∈ [−h, 0]

(2.20)

where x ∈ x ⊂ Rn, φ ∈ C[−h, 0] and h ∈ R+ are respectively the system state, the functional
initial condition and the constant time-delay. This leads to the following theorem

Theorem 2.2.11 The latter system is delay-dependent asymptotically stable for a constant
time-delay h if and only if there exist a constant matrix P = P T ∈ Rn×n, a scalar ε > 0 and
continuously differentiable matrix functions

Q(ξ) : [−h, 0]→ Rn×n

R(ξ, η) = R(η, ξ)T , with R(ξ, η) : [−h, 0]2 → Rn×n

S(ξ) = S(ξ)T : [−h, 0]→ Rn×n

such that

V (xt) = x(t)TPx(t) + 2x(t)T
∫ 0

−r
Q(ξ)x(t+ ξ)dξ +

∫ 0

−r

[∫ 0

−r
x(t+ ξ)TR(ξ, η)x(t+ η)dη

]
dξ

+
∫ 0

−r
x(t+ ξ)TS(ξ)x(t+ ξ)dξ ≥ ε||x(t)||2

(2.21)
is a Lyapunov-Krasovskii functional. Moreover its time derivative satisfies

V̇ (xt) = x(t)T [PA+ATP +Q(0) +QT (0) + S(0)]x(t)− x(t− h)TS(−h)x(t− h)

−
∫ 0

−h
x(t+ ξ)T Ṡ(ξ)x(t+ ξ)dξ + 2x(t)T [PAh −Q(−h)]x(t− h)

−
∫ 0

−h
dξ

∫ 0

−h
x(t+ ξ)T

[
∂

∂ξ
R(ξ, η) +

∂

∂η
R(ξ, η)

]
x(t+ η)dη

+2x(t)T
∫ 0

−h
[ATQ(ξ)− Q̇(ξ) +R(0, ξ)]x(t+ ξ)dξ

+2x(t)T
∫ 0

−h
[AThQ(ξ)−R(−h, ξ)]x(t+ ξ)dξ ≤ −ε||x(t)||2

(2.22)
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In practice, it is numerically difficult to check the existence of such a quadratic functional.
Indeed, it describes an infinite dimensional problem since decision variables are functions (i.e.
Q,R, S). To overcome this problem a discretization scheme may be adopted [Fridman, 2006b,
Gu et al., 2003, Han and Gu, 2001] or a Sum-of-Squares based relaxation [Papachristodoulou
and Prajna, 2002, Papachristodoulou et al., 2005, 2007, Prajna et al., 2004]. Section 3.6.1
will be devoted to a particular discretized Lyapunov-Krasovskii functional.

Note that the Lyapunov-Krasovskii functional requires the state variable x(t) in the in-
terval [−h, 0] and necessitates the manipulation of functionals, which consequently makes the
application of the Lyapunov-Krasovskii theorem rather difficult. This difficulty may some-
times be circumvented using the Razumikhin theorem, an alternative result invoking only
functions rather than functionals.

The key idea behind the Razumikhin theorem also focuses on a function V (x) represen-
tative of the size of x(t). For such a function,

V̄ (xt) = max
θ∈[−h,0]

V (x(t+ θ)) (2.23)

serves to measure the size of xt. If V (x(t)) < V̄ (xt), then V̇ (x) > 0 does not make V̄ (xt)
grow. Indeed, for V̄ (xt) to not grow, it is only necessary that V̇ (x(t)) is not positive whenever
V (x(t)) = V̄ (xt). The precise statement is as follows.

Theorem 2.2.12 (Lyapunov-Razumikhin Stability Theorem) Suppose f : R×C[−h, 0] →
Rn in (2.18) takes R × (bounded sets of C[−h, 0]) into bounded sets of Rn, and u, v, w :
R̄+ → R̄+ are continuous nondecreasing functions, u(s) and v(s) are positive for s > 0, and
u(0) = v(0) = 0, v strictly increasing.

If there exists a continuously differentiable function V : R× Rn → R such that

u(||x||) ≤ V (t, x) ≤ v(||x||), for t ∈ R and x ∈ Rn (2.24)

and the derivative of V along the solution x(t) of (2.18) satisfies

V̇ (t, x(t)) ≤ −w(||x(t)||) whenever V (t+ θ, x(t+ θ)) ≤ V (t, x(t)) (2.25)

for θ ∈ [−h, 0], then the system (2.18) is uniformly stable.
If, in addition, w(s) > 0 for s > 0, and there exists a continuous nondecreasing function

p(s) > s for s > 0 such that condition (2.25) is strengthened to

V̇ (t, x(t)) ≤ −w(||x(t)||) if V (t+ θ, x(t+ θ)) ≤ p(V (t, x(t))) (2.26)

for θ ∈ [−h, 0], then the system (2.18) is uniformly asymptotically stable.
If in addition lims→+∞ u(s) = +∞, then the system (2.18) is globally uniformly asymp-

totically stable.

Lyapunov-Krasovskii and Lyapunov-Razumikhin are the most famous results concerning
stability of time-delay systems in the time-domain. However, there exists several others
results, see for instance [Barnea, 1969]. In Sections 2.2.1.4 and 2.2.1.9 different stability tests
will be derived using both theorems.
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2.2.1.2 About model transformations

Model-transformations have been introduced early in the stability analysis of time-delay sys-
tems. They allow to turn a time-delay system into a new system, which is referred to as a
comparison system. Finally, the stability of the original system is determined through the
stability analysis of the comparison model. They are generally used to remove annoying terms
in the equations or to turn the expression of the system in a more convenient form. Com-
parison systems may be of different types, (uncertain) finite dimensional linear systems (see
[Gu et al., 2003, Knospe and Roozbehani, 2006, 2003, Roozbehani and Knospe, 2005, Zhang
et al., 1999, 2001]), time-delay systems (see [Fridman and Shaked, 2001, Gu et al., 2003]). In
our papers [Briat et al., 2007a, 2008b], a time-delay system is turned into an uncertain finite
dimensional LPV systems from which a new control strategy is developed; this will developed
in Section 5.1.7.

Some model transformations are introduced here, although the list is non exhaustive due
to the important work that has been done in that field, it will be focused on two initial first-
order model transformations [Goubet-Batholoméus et al., 1997, Kolmanovskii and Richard,
1997, 1999, Kolmanovskii et al., 1998, Li and de Souza, 1996, Niculescu, 1999, Niculescu
and Chen, 1999, Su, 1994, Su and Huang, 1992] and a recent one [Fridman, 2001, Fridman
and Shaked, 2001] which will be detailed in the following. The motivation for which only
three model transformations have been chosen to be presented, comes from the fact the two
first ones are simple but may induce some conservatism through the creation of additional
dynamics which may be unstable. It will be shown in Section 2.2.1.3 than the second one is
less conservative than the first and the last one does not induce some conservatism despite of
its apparent complexity.

First of all, let us consider the linear time-delay system

ẋ(t) = Ax(t) +Ahx(t− h)
x0 = φ

(2.27)

where A,Ah are given n× n real matrices and φ is the functional initial condition.
The following model transformations have been chosen to be illustrated in this section.

Euler formula : The Euler formula is the oldest model transformation which has been in-
troduced [Goubet-Batholoméus et al., 1997, Kolmanovskii and Richard, 1997, 1999, Li
and de Souza, 1996, Su, 1994, Su and Huang, 1992] and is still in use for different
purposes [Gu et al., 2003, He et al., 2004, Niculescu, 2001]:

x(t− h) = x(t)−
∫ t

t−h
ẋ(θ)dθ (2.28)

It allows to turn the time-delay system with discrete delay (2.27) into the following
system with distributed delay:

ẋ(t) = (A+Ah)x(t)−Ah
∫ t

t−h
[Ax(s) +Ahx(s− h)]ds (2.29)

Parametrized Euler formula : This model transformation [Kolmanovskii et al., 1998, Niculescu,
1999, Niculescu and Chen, 1999] improves the result obtained from the Euler formula
by introducing a free parameter:

Cx(t− h) = Cx(t)− C
∫ t

t−h
ẋ(θ)dθ (2.30)
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where C ∈ Rn×n is a free matrix. It allows to turn the time-delay system with discrete
delay into a system with distributed delay:

ẋ(t) = (A+ C)x(t) + (Ah − C)x(t− h)− C
∫ t

t−h
[Ax(s) +Ahx(s− h)]ds (2.31)

Note that for C = 0 the original system is recovered and for C = Ah the system obtained
from Euler formula.

Descriptor Model Transformation : This model transformation [Fridman, 2001, Frid-
man and Shaked, 2001] allows to turn a time-delay system into a singular system with
distributed delay
[
I 0
0 0

] [
ẋ(t)
ẏ(t)

]
=
[

0 I
A+Ah −I

] [
x(t)
y(t)

]
+
∫ t

t−h

[
0 0
0 −Ah

] [
x(s)
y(s)

]
ds (2.32)

where y(t) = ẋ(t). By substituting the expression of y(t) defined by the second row in
the first row, the original system (2.27) is retrieved.

Many other model transformations have been provided in the literature and the author
should refer, for instance, to [Gouaisbaut and Peaucelle, 2006a,b, 2007, Goubet-Batholoméus
et al., 1997, Gu et al., 2003, Kao and Rantzer, 2007, Knospe and Roozbehani, 2006, 2003,
Kolmanovskii and Myshkis, 1962, Kolmanovskii and Richard, 1997, 1998, Kolmanovskii et al.,
1998, Li and de Souza, 1996, Niculescu, 2001, 1997, 1999, Niculescu and Chen, 1999, Roozbe-
hani and Knospe, 2005, Su, 1994, Su and Huang, 1992, Zhang et al., 1999]. Many of model
transformations introduced in the latter references have not been introduced in same spirit
as the model-transformations detailed above, but in view of turning the system into another
form in order to analyze it in a different framework. This will be detailed in Sections 2.2.1.4
to 2.2.1.8.

2.2.1.3 Additional Dynamics

Stability tests obtained from comparison systems are, in most of the cases, outer approxi-
mations of the original system only. This means that if the comparison model is stable then
the original system is stable too but the converse does not necessary hold. The following
development is borrowed from [Gu and Niculescu, 2000, 1999, Gu et al., 2003] and some pre-
cisions on additional dynamics can also be found in [Kharitonov and Melchor-Aguila, 2003]
and references therein.

For instance the simpler model transformation (i.e. the Euler formula) leads to the com-
parison system

ż(t) = (A+Ah)z(t)−Ah
∫ t

t−h
[Az(t) +Ahz(s− h)]ds (2.33)

where the instantaneous state is set to z to emphasize the difference between the original and
comparison model.

The characteristic polynomial of the latter comparison system is then given by

∆c(s) := det(s2I − (A+Ah)s+AhA(1− e−sh) +A2
he
−sh(1− e−sh)) (2.34)

while the one of the original system is

∆o := det(sI −A−Ahe−sh) (2.35)



2.2. STABILITY ANALYSIS OF TIME-DELAY SYSTEMS 93

Therefore, it seems evident that the behavior of both systems may be different. To see
this, we will emphasize that the comparison system quasipolynomial exhibits supplementary
zeros, and hence additional dynamics. The idea is to factorize the comparison polynomial by
the original quasipolynomial as

∆c(s) = ∆o(s)∆a(s) (2.36)

where

∆a(s) := det
(
I − 1− e−sh

s
Ah

)
(2.37)

This shows that the set of zeros of the quasipolynomial of the comparison system is
composed by the set of zeros of the quasipolynomial of the original system and some additional
zeros. The idea is then to determine the location of these additional zeros in the complex
plane. It is clear that if the real part of these zeros is nonnegative, the comparison system is
unstable, even if the original system is stable (zeros of ∆o(s) have strictly negative real part).
Some results on this stability analysis are presented below.

Note that

∆a(s) =
n∏

i=1

(
1− λi

1− e−sh
s

)
(2.38)

where λi is the ith eigenvalue of matrix Ah and let s = sik, k = 1, 2, 3, . . . be all the solutions
of the equation

1− λi
1− e−sh

s
= 0 (2.39)

Then sik, i = 1, . . . , n, k = 1, 2, 3, . . . are all the additional poles of the comparison system.

Proposition 2.2.13 For any given Ah, all the additional poles satisfy

lim
h→0+

<(sik) = −∞

As a result, all the additional poles have negative real part for sufficiently small h. As h
increases, some of the additional poles may cross the imaginary axis. It turns out that the
exact crossing value can be analytically calculated. This is stated in the theorem below.

Theorem 2.2.14 Corresponding to an eigenvalue λi of Ah, =(λi) 6= 0, there is an additional
pole sik on the imaginary axis if and only if the time delay satisfies

h = hik =
kπ + arg(λi)
=(λi)

> 0, k = 0,±1,±2, . . .

Corresponding to a positive real eigenvalue λi of Ah, there is an additional pole on the imag-
inary axis if and only if

h =
1
λi

No additional poles corresponding to a negative real eigenvalue λi of Ah will reach the imagi-
nary axis for any finite delay.
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Therefore, if all the eigenvalues of the matrix Ah are real and negative, then the original
and comparison system are equivalent for this particular model transformation.

On the second hand, some model transformations do not create such a gap between the
original and comparison system. This is the case for the parametrized model transformation
introduced in Goubet-Batholoméus et al. [1997], Niculescu [1999], Niculescu and Chen [1999],
and for the descriptor model transformation introduced in [Fridman, 2001, Fridman and
Shaked, 2001] which constructs a singular system with distributed delay that is equivalent,
from a stability point of view, to the original system. Indeed, for the parametrized model
transformation, it can be shown that the additional poles are solutions of the equation

det
(
I − C 1− e−sh

s

)
= 0

This shows that for a judicious choice of the free matrix C, no unstable dynamics are generated
which emphasizes the interest of the parametrized model transformation.

Finally, let us consider now the descriptor model transformation, the comparison model
is governed by

[
I 0
0 0

] [
ẋ(t)
ẏ(t)

]
=
[

0 I
A+Ah −I

] [
x(t)
y(t)

]
+
∫ t

t−h

[
0 0
0 −Ah

] [
x(s)
y(s)

]
ds

The corresponding characteristic polynomial is

∆cd(s) := det






sI −I
−(A+Ah) I +Ah

1− e−sh
s






:= det
(
sI −A−Ahe−sh

)

and we get the quasipolynomial of the original system by application of the determinant
formula (see Appendix A.1). This shows that the systems are equivalent and is the great
advantage of this model transformation. This has a great benefit in performances analysis of
time-delay systems. Nevertheless the system is changed in a singular form and the delay is
now a distributed delay, which may introduce some difficulties in the stability analysis.

2.2.1.4 Stability Analysis: Lyapunov-Razumikhin Functions

The two main extensions of Lyapunov’s theory for time-delay systems have been introduced.
It has been presented that stability criteria may be done using a reformulation of the system by
a procedure called ’model-transformation’. This procedure, according to its type, may induce
some additional dynamics leading to a non-equivalence between the original and the trans-
formed system. This section is devoted to simple stability tests using Lyapunov-Razumikhin
theorem and both delay-dependent and delay-independent tests are provided.

Let us consider here a general linear time-delay system of the form

ẋ(t) = Ax(t) +Ah(t− h)
x(t+ θ) = φ(θ), θ[−h, 0]

(2.40)

Delay-independent stability test via Lyapunov-Razumikhin theorem
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A simple test on delay-independent stability using quadratic Lyapunov-Razumikhin func-
tion is provided here

V (x(t)) = x(t)TPx(t) (2.41)

The time-derivative of V along the trajectories solutions of system (2.40) is given by

V̇ (x(t)) =
[

x(t)
x(t− h)

]T [
ATP + PA PAh

ATh 0

] [
x(t)

x(t− h)

]

Applying the Lyapunov-Razumikhin theorem 2.2.12, V̇ (x(t)) must be negative whenever
V (x(t + θ)) < pV (x(t)) for some p > 1 and for all θ ∈ [−h, 0]. Since the latter inequal-
ity holds for all θ ∈ [−h, 0] then we have V (x(t − h)) < pV (x(t)) and by application of the
S-procedure (see [Boyd et al., 1994] or appendix E.9), we get

[
ATP + PA+ τpP PAh

AThP −τP

]
≺ 0 (2.42)

with τ > 0. Finally let p = 1 + δ, for a small δ > 0, we get the following result

Theorem 2.2.15 System (2.40) is asymptotically stable independent of delay if there exists
P = P T � 0 and a scalar τ > 0 such that

[
ATP + PA+ τP PAh

AThP −τP

]
≺ 0 (2.43)

Note that the feasibility of matrix inequality (2.43) implies the feasibility of matrix inequality
(2.42).

It is clear that the latter inequality provides a delay-independent stability test since the
matrix inequality does not depend on the delay. Moreover, it is worth noting, that (2.43) is not
a LMI due to bilinear term τP but fall into the framework of generalized eigenvalues problem
(see [Boyd et al., 1994, Gu et al., 2003, Nesterov and Nemirovskii, 1994]). Nevertheless, the
problem is quasi-convex since if τ is fixed, then (2.43) becomes a LMI. This means that a
suitable value for τ can be found using an iterative line search.

Delay-dependent stability test via Lyapunov-Razumikhin theorem

We give an example of delay-dependent result obtained from the application of the Lyapunov-
Razumikhin theorem 2.2.12. The proof can be found in [Gu et al., 2003] and is omitted since
it requires preliminary results on stability of distributed delay which are not of interest.
However, it is important to say that it is based on the Euler model transformation.

Theorem 2.2.16 System (2.40) is delay-dependent asymptotically stable is there exists P =
P T � 0 and scalars α, α0, α1 > 0 such that



M P (αI −Ah)A P (αI −Ah)Ah
? −α0P − αhAT0 PA0 −αhATPAh
? ? −α1P − αhAThPAh


 ≺ 0

holds with M =
1
r

[
P (A+Ah) + (A+Ah)TP

]
+ (α0 + α1)P
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A discussion on the choice of scalars α, αi, i = 0, 1 is provided in [Gu et al., 2003]. As
previously, the computation of P, α, αi, i = 0, 1 is not an easy task since the resulting condition
is not a LMI. The problem is quasi-convex and an iterative procedure should be performed
in order to find suitable values for α, αi, i = 0, 1. However, this iterative procedure is more
difficult than in the delay-independent case since the search has to be performed over a three-
dimensional space (instead of a one-dimensional), which is more involved from a algorithmic
and computational point of view.

2.2.1.5 Stability Analysis: Lyapunov-Krasovskii Functionals

Despite of the simplicity of Lyapunov-Razumikhin functions, they generally lead to nonlinear
matrix inequalities and to conservative results due to the use of non-equivalent model trans-
formations. The use of Lyapunov-Krasovskii functionals, even if historically were used with
identical model-transformations, have led to more and more accurate LMI results by applying
either more precise bounding techniques of cross-terms (as of [Park, 1999, Park et al., 1998]),
or more exact model transformations (as of [Fridman, 2001, Fridman and Shaked, 2001]) or
also other methods without any model transformations (see for instance [Briat et al., 2008a,
Gouaisbaut and Peaucelle, 2006b, Han, 2005a, Xu and Lam, 2007, Xu et al., 2006]).

This section is devoted to provide, in a chronological path, different results on delay-
independent and delay-dependent stability based on Lyapunov-Krasovskii theorem 2.2.10.
First of all, a simple delay-dependent stability test will be provided and secondly a delay-
dependent stability test will be developed. The delay-dependent stability test is based on
the Euler model transformation and induces cross terms in the equations. These terms in-
volving products of signals at time t and the integral of same signals over the [t − h, t] are
of great difficulty. Different bounds have been provided in the literature to avoid overcome
these difficulties and are of interest since they had led to more and more accurate results.
Finally, several other stability tests not based on model transformation and avoiding them
are introduced.

A more complete review on Lyapunov-Krasovskii functionals is given in Appendix ??.

Delay-Independent stability test via Lyapunov-Krasovskii theorem

Consider the Lyapunov-Krasovskii functional given by

V (xt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TQx(θ)dθ (2.44)

where P,Q ∈ Sn++ are constant decision matrices.
Computing the derivative of the Lyapunov-Krasovskii functional V (xt) along the trajec-

tories solutions of system (2.27) yields

V̇ (xt) = ẋ(t)TPx(t) + x(t)TPẋ(t) + x(t)TQx(t)− x(t− h)TQx(t− h)
= [Ax(t) +Ahx(t− h)]T Px(t) + x(t)TP [Ax(t) +Ahx(t− h)]

+x(t)TQx(t)− x(t− h)TQx(t− h)

=
[

x(t)
x(t− h)

] [
ATP + PA+Q PAh

AThP −Q

] [
x(t)

x(t− h)

]

By enforcing the latter quadratic form to be negative definite we get
[
ATP + PA+Q PAh

AThP −Q

]
≺ 0 (2.45)
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Moreover by continuity of the eigenvalues this is equivalent to say that

[
ATP + PA+Q+ εI PAh

AThP −Q

]
≺ 0 (2.46)

for some ε > 0. This implies that V̇ (t) ≤ −ε||x(t)||2 and the Lyapunov-Krasovskii theorem
is satisfied. We then obtain the following result:

Theorem 2.2.17 System (2.40) is asymptotically stable for any delay if there exist matrices
P = P T � 0 and Q = QT � 0 such that

[
ATP + PA+Q PAh

? −Q

]
≺ 0 (2.47)

holds.

It is worth noting that the structure recalls the one obtained from the application of the
Lyapunov-Razumikhin theorem, but is LMI in the current case. Moreover, this test is less
conservative than the delay-independent Lyapunov-Razumikhin test since matrix Q is free and
independent of P in the Lyapunov-Krasovskii test while the matrix is τP is the Lyapunov-
Razumikhin test and strongly correlated to P . As a conclusion the Lyapunov-Krasovskii
based test includes the Lyapunov-Razumikhin test as a particular case Q = τP .

Delay-Dependent stability test via Lyapunov-Krasovskii theorem

Many studies have dealt with the problem of determination of the delay-margin for time-
delay systems. The aim of this paragraph is to provided an evolutive point of view of meth-
ods used to determine the delay-margin of a time-delay through the use of the Lyapunov-
Krasovskii theorem 2.2.10. In this objective, model transformations have played a central
role (and sometimes still play an important role in certain approaches). Despite of their ef-
fect of inducing additional dynamics leading to a certain conservatism they have facilitated
the derivation of delay-dependent stability conditions. However, additional dynamics are not
the only difficulties that they induce, they also generate cross-terms in the the mathemati-
cal development of the stability condition. While additional dynamics are a hidden problem
which is not viewed directly by in the mathematical proof of stability tests, cross-terms are
mathematical difficulties that have needed to be overcome or avoided.

Let us consider the following Lyapunov-Krasovskii functional

V (xt, ẋt) = V1(xt) + V2(xt) + V3(xt, ẋt)
V1(xt) = x(t)TPx(t)
V2(xt) =

∫ t
t−h x(θ)TQx(θ)dθ

V3(xt, ẋt) =
∫ 0

−h

∫ t

t+θ
ẋ(η)TZẋ(η)dηdθ

(2.48)

with P = P T , Q = QT , Z = ZT � 0. According to Euler transformation, system (2.27) is
turned into

ẋ(t) = (A+Ah)x(t)−
∫ t

t−h
x(θ)dθ (2.49)
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Computing the derivative of V along the trajectories solutions of the latter system yields

V̇1(xt) = ẋ(t)TPx(t) + x(t)TPẋ(t)

= x(t)T [(A+Ah)TP + P (A+Ah)]x(t)− 2x(t)TPAh

∫ t

t−h
ẋ(θ)dθ

= x(t)T [(A+Ah)TP + P (A+Ah)]x(t)

−2x(t)TPAh

∫ t

t−h
[Ax(θ) +Ahx(θ − h)]dθ

V̇2(xt) = x(t)TQx(t)− x(t− h)TQx(t− h)

V̇3(xt, ẋt) = hẋ(t)TZẋ(t)−
∫ t

t−h
ẋ(θ)TZẋ(θ)dθ

(2.50)

It is possible to see that a cross-term appears in V̇1 and is a coupling between the state
at time t and an integral of Ax(θ) + Ahx(θ − h) over [t− h, t]. This annoying term must be
bounded in order to decouple the integral for x(t). A simple bound can be provided by noting
that

∫ t

t−h




x(t)
x(θ)

x(θ − h)



T 

PAh
AT

ATh


Z



PAh
AT

ATh



T 


x(t)
x(θ)

x(θ − h)


 dθ ≥ 0 (2.51)

for some Z = ZT � 0 and hence

−2x(t)TPAh

∫ t

t−h
ẋ(θ)dθ = −2x(t)TPAh

∫ t

t−h
Ax(θ) +Ahx(θ − h)dθ

≤
∫ t

t−h
x(t)TPAhZ−1AThPx(t)dθ +

∫ t

t−h
ẋ(θ)TZẋ(θ)dθ

≤ hx(t)TPAhZ−1AThPx(t) +
∫ t

t−h
ẋ(θ)TZẋ(θ)dθ

And thus we have

V̇ ≤ x(t)T [(A+Ah)TP + P (A+Ah) +Q]x(t) + hx(t)TPAhZ−1AThPx(t)
−x(t− h)TQx(t− h) + hẋ(t)TZẋ(t)

Finally since

+ hẋ(t)TZẋ(t) = h

[
x(t)

x(t− h)

]T [
ATZA ATZAh
? AThZAh

]
(2.52)

we get

V̇ ≤
[

x(t)
x(t− h)

]T [ Ψ hATZAh
? −Q+ hAThZAh

] [
x(t)

x(t− h)

]
(2.53)

where Ψ = (A+ Ah)TP + P (A+ Ah) +Q+ hATZA+ hPAhZ
−1AThP and therefore system

(2.27) is delay-dependent stable with delay margin h if there exists symmetric positive definite
matrices P,Q,Z such that the LMI




(A+Ah)TP + P (A+Ah) +Q+ hATZA hATZAh +hPAh
? −Q+ hAThZAh 0
? ? −hZ


 ≺ 0 (2.54)
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holds.
Through the use of the Lyapunov-Krasovskii theorem 2.2.10 and the Euler model trans-

formation we have developed a delay-dependent stability test. This model transformation has
introduced cross terms which have been bounded by a technique based on a completion of
the squares. This bound allowed to compensate the integral term coming the differentiation
of V3 and then remove the annoying integral term

∫ t

t−h
ẋ(θ)TZẋ(θ)dθ (2.55)

of the expression of V̇ .
Obviously, the bound on cross-terms is very conservative since, while the left-hand side

of the inequality may be negative, the right-hand side is always nonnegative. One of the
great improvement of the Lyapunov-Krasovskii based methods was the introduction of better
bounds on cross-terms. Some additional material is detailed in Appendix F.2 on bounding
cross-terms.

Park’s Bounding Method A seminal result on time-delay system (from my point of
view) is provided here and has been introduced in [Park, 1999, Park et al., 1998]. The idea
was based on a more accurate bounding of cross terms in the derivative of the Lyapunov-
Krasovskii functional (see appendix F.2 or [Park, 1999, Park et al., 1998]).

Park [1999] introduced the following lemma:

Lemma 2.2.18 Assume that a(α) ∈ Rnx and b(α) ∈ Rny are given for α ∈ Ω. Then, for any
positive definite matrix X ∈ Rnx×nx and any matrix M ∈ Rny×ny , the following holds

− 2
∫

Ω
b(α)Ta(α)dα ≤

∫

Ω

[
a(α)
b(α)

]T
Ψ
[
a(α)
b(α)

]
dα (2.56)

with

Ψ =
[

X XM
MTX (MTX + I)X−1(XM + I)

]

The bound provided in the latter lemma is able to provide a better bound on the cross
term by allowing negative values for the bound. With the following Lyapunov-Krasovskii
functional

V (xt, ẋt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TQx(θ)dθ +

∫ 0

−h

∫ t

t+θ
ẋ(η)TAThRAhẋ(η)dηdθ (2.57)

and the Park’s bounding theorem together leads to the theorem

Theorem 2.2.19 System (2.40) is asymptotically delay-dependent stable for all h ∈ [0, h̄] if
there exist P = P T � 0, Q = QT � 0, R = RT � 0, V = V T � 0 and W such that




M11 −W TAh ATAThV h̄(W T + P )
? −Q AThA

T
hV 0

? ? −V 0
? ? ? −V


 ≺ 0 (2.58)

holds with M11 = (A+Ah)TP + P (A+Ah) +W TAh +AThW + V .
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Although this technique allows to consequently reduce the conservatism of the method
by finding a more accurate bound on cross-terms, it is still limited by the use of the Euler
model-transformation (which may introduce additional dynamics) and hence it would be
more convenient to use Park’s bounding method with a model transformation which does not
generate additional dynamics.

Descriptor Model Transformation This model transformation has been introduced
in [Fridman, 2001, Fridman and Shaked, 2001] and as shown in Section 2.2.1.3, it does not
introduce any additional dynamics. It is briefly recalled here for system (2.40):

E
[
ẋ(t)
ẏ(t)

]
= A

[
x(t)
y(t)

]
+Ah

∫ t

t−h

[
x(s)
y(s)

]
ds (2.59)

where E =
[
I 0
0 0

]
, A =

[
0 I

A+Ah −I

]
and Ah =

[
0 0
0 −Ah

]
.

One of the earliest results in this framework considers the Lyapunov-Krasovskii functional

V (xt, yt) =
[
x(t)
y(t)

]T
ETP

[
x(t)
y(t)

]
+
∫ 0

−h

∫

t+θ
y(s)TRy(s)dsdθ (2.60)

where P =
[
P1 0
P2 P3

]
, ETP = P TE, P1 = P T1 � 0 and R = RT � 0. It is proved in [Fridman

and Shaked, 2001] that such a Lyapunov-Krasovskii functional leads to the following theorem

Theorem 2.2.20 System (2.40) is delay-dependent asymptotically stable for all h ∈ [0, h̄] if
there exists matrices P1 = P T1 � 0, R = RT � 0, P2, P3 such that the LMI




(A+Ah)TP2 + P T2 (A+Ah) P1 − P T2 + (A+Ah)TP3 h̄P T2 Ah
? −P3 − P T3 + hR h̄P T3 Ah
? ? −h̄R


 ≺ 0 (2.61)

holds.

This results is based on a bounding technique of cross terms involving a positive matrix
as on page 97. However, results of [Fridman and Shaked, 2002b] involves Park’s bounding
technique and leads to less conservative stability conditions coupled with complete Lyapunov-
Krasovskii functional [Fridman, 2006a]. Although this method is interesting and leads to
results of quality, it still leads to cross terms which are difficult to bound and result in
conservative conditions from an absolute point of view.

Method of Free Weighting Matrices The following approach has been introduced in
[He et al., 2004] and consists in injecting additional constraints into the LMI in order to tackle
relations between signals involved in the system. These constraints involve additional free
variables adding extra-degree of freedom into the LMI and this motivates the denomination
of free weighting matrices approach.

The Lyapunov-Krasovskii functional used in [He et al., 2004] is

V (xt, ẋt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TQx(θ)dθ +

∫ 0

−h

∫ t

t+θ
ẋ(η)TRẋ(η)dηdθ (2.62)



2.2. STABILITY ANALYSIS OF TIME-DELAY SYSTEMS 101

and is very similar to (2.57).
It is important to note that the following equality holds for all signals ẋ, x, xh governed

by the expression of system (2.27).

2
[
x(t)TN1 + x(t− h)TN2 + ẋ(t)N3

]
·
[
x(t)− x(t− h)−

∫ t

t−h
ẋ(s)ds

]
= 0

2
[
x(t)TT1 + x(t− h)TT2 + ẋ(t)T3

]
· [ẋ(t)−Ax(t)−Ahx(t− h)] = 0

h̄




x(t)
x(t− h)
ẋ(t)



T

X




x(t)
x(t− h)
ẋ(t)


−

∫ t

t−h




x(t)
x(t− h)
ẋ(t)



T

X




x(t)
x(t− h)
ẋ(t)


 dθ ≥ 0

for a free matrix X = XT � 0

(2.63)

Indeed, the first constraint defines the Euler integral formula, the second constraint defines
the model of the system and the last one defines h̄ as the maximal value of the time-delay
h. The key idea in this method is to differentiate the Lyapunov-Krasovskii functional but do
not substitute the values of signal ẋ in it. The constraints are then injected and this results
in a quadratic form in col(ẋ(t), x(t), x(t− h)) involving a integral quadratic term with vector
col(ẋ(t), x(t), x(t− h), ẋ(s)). By an appropriate choice of the matrix X the integral term can
be neglected and finally by a Schur complement the following result is obtained:

Theorem 2.2.21 System (2.40) is delay-dependent asymptotically stable for all h ∈ [0, h̄]
if there exists matrices P = P T � 0, Q = QT � 0, R = RT � 0, X = XT � 0
N1, N2, N3, T1, T2, T3 such that the LMI




Q+NH
1 − (T1A)H NT

2 −N1 −ATT T2 − T1Ah P +NT
3 + T1 −ATT T3 h̄N1

? −Q−NH
2 − (T2Ah)H −NT

3 + T2 −AThT T3 h̄N2

? ? h̄R+ TH3 h̄N3

? ? ? −h̄R


 ≺ 0

(2.64)
holds.

While the addition of free variables is an advantage in the stability analysis (especially
for robust stability analysis [He et al., 2004]), it becomes a drawback in synthesis problems
since these decision variables are coupled to the system matrices (hence to the controller of
observers gain) preventing to find a linearizing change of variable. A usual method consists
in assuming a common simplification Ti = εiK where εi are chosen fixed scalars and K is a
decision matrix.

Approach using Jensen’s inequality We give here a result which is not based on a
model transformation but uses the Jensen’s inequality (see Appendix F.1) and allows to avoid
the bounding of cross-terms and any use of model transformation. It has been provided in
different papers for instance in [Gouaisbaut and Peaucelle, 2006b, Han, 2005a].

Let us consider the Lyapunov-Krasovskii functional (2.62) and computing its time-derivative
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along the trajectories solutions of system (2.27) gives

V̇ =
[

x(t)
x(t− h)

]T [
ATP + PA+Q PAh

AThP −Q

] [
x(t)

x(t− h)

]
+ hẋ(t)TRẋ(t)

=
[

x(t)
x(t− h)

]T [
ATP + PA+Q+ hATRA PAh + hATRAh

AThP + hAThRA −Q+ hAThRAh

] [
x(t)

x(t− h)

]

−
∫ t

t−h
ẋ(θ)TRẋ(θ)dθ

At first sight the integral term could be neglected (bounded above by 0) but this will result
in a too conservative condition. A more tight solution is the use of the Jensen’s inequality
on this integral term. The Jensen’s inequality allows to establish the following bound on the
integral term

−
∫ t

t−h
ẋ(s)TRẋ(s)ds ≤ −h̄−1

(∫ t

t−h
ẋ(s)ds

)T
R

(∫ t

t−h
ẋ(s)ds

)
(2.65)

Finally this leads to the following result

Theorem 2.2.22 System (2.40) is delay-dependent asymptotically stable for all h ∈ [0, h̄] if
there exists matrices P = P T � 0, Q = QT � 0, R = RT � 0 such that the LMI

[
ATP + PA+Q− h̄−1R+ h̄ATRA PAh + h̄−1R+ h̄ATRAh

? −Q− h̄−1R+ h̄AThRAh

]
≺ 0 (2.66)

holds.

As remark, it is important to note that this result is identical to the method of free
weighting matrices presented in the previous paragraph on page on page 100. Indeed, LMI
(2.64) can be written as

Ψ + UTZV + V TZTU ≺ 0 (2.67)

where

Ψ =




Q 0 P 0
? −Q 0 0
? ? h̄R 0
? ? ? −h̄R


 Z =



T1 N1

T2 N2

T3 N3


 U =



I 0 0 0
0 I 0 0
0 0 I 0




and

V =
[
−A −Ah I 0
I −I 0 h̄I

]

Here the matrix Z is an unconstrained matrix and hence the projection lemma applies
(see appendix E.18). It states that there exist at least one solution Z to (2.67) if and only if
the two following underlying LMIs hold

Ker[U ]TΨKer[U ] ≺ 0
Ker[V ]TΨKer[V ] ≺ 0



2.2. STABILITY ANALYSIS OF TIME-DELAY SYSTEMS 103

These basis of null-spaces can be expressed as

Ker[U ] =




0
0
0
I


 Ker[V ] =




I 0
0 I
A Ah
−h̄−1 h̄−1I


 (2.68)

The leads to
Ker[U ]TΨKer[U ] = −h̄R (2.69)

which is negative definite by definition of R � 0. This means that feasibility of (2.67) is
equivalent to the feasibility of the second underlying LMI:

Ker[V ]TΨKer[V ] =
[
ATP + PA+Q− h̄−1R+ h̄ATRA PAh + h̄−1R+ h̄ATRAh

? −Q− h̄−1R+ h̄AThRAh

]

(2.70)
The latter LMI is equivalent to (2.66) (they are identical modulo a Schur’s complement)

which allows to conclude that (2.66) and (2.64) define the same stability criterium. The
advantage of formulation (2.64) is the decoupling between Lyapunov matrices P,Q,R and
data matrices A,Ah which allows to provide interesting robust stability result for polytopic
type uncertainties (see for instance [Gouaisbaut and Peaucelle, 2006b, He et al., 2004]). For
stability analysis, criterion (2.66) is more interesting since it has low computational complexity
(due to the absence of ’slack’ variables and therefore a lower number of decision matrices).

Actually, many results in time-delay systems are related to each others modulo congruence
transformations, Schur’s complement or through the use of other theorems. This is empha-
sized in [Xu and Lam, 2007]. Other Lyapunov-Krasovskii based approaches avoiding model
transformation have been provided in many research papers, see for instance [Xu et al., 2006].

2.2.1.6 Stability Analysis: (Scaled) Small-Gain Theorem

We have presented different results based on Lyapunov-Krasovskii functionals. It is aimed here
at showing that similar results can be retrieved through the use of (scaled) small-gain theorem.
Indeed, it is possible to provide delay-independent and delay-dependent stability tests based
on the use of the small-gain theorem as emphasized for instance in [Zhang et al., 2001]. The
correspondence between small-gain results and Lyapunov-Krasovskii will be emphasized.

Let us consider here the following operators:

Dh : x(t)→ x(t− h)

Sh : x(t)→
∫ t

t−h
x(s)ds

Delay-Independent Stability Test using Scaled Small-Gain Theorem

This paragraph is devoted to delay-independent stability test using scaled-small gain theo-
rem. First of all, system (2.27) must be rewritten as an interconnection of two subsystems (i.e.
a linear finite dimensional systems and the delay operator Dh) according to the framework of
small-gain theorem. Hence (2.27) is rewritten as

ẋ(t) = Ax(t) +Ahw(t)
z(t) = x(t)
w(t) = Dh(z(t))

(2.71)
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It has been shown that the operator Dh(·) is asymptotically stable and therefore has finite
H∞-norm. Indeed, if the input of the operator has finite L2-norm then the output, which is
the delayed input with a constant delay, will have finite energy too; this shows stability. In
order to determine the value of the H∞-norm of Dh(·) it suffices to compute the ratio of the
output energy over the input energy:

∫ +∞

0
w(θ)Tw(θ)dθ =

∫ +∞

0
z(θ − h)T z(θ − h)dθ

=
∫ +∞

−h
z(θ′)T z(θ′)dθ′

with the change of variable θ′ = θ − h. Hence assuming zero initial conditions (i.e. z(t) = 0
for all t < 0) we get

∫ +∞

0
w(θ)Tw(θ)dθ =

∫ +∞

0
z(θ′)T z(θ′)dθ′

showing that the operator Dh(·) has unitary H∞-norm.
Using this result it is possible to apply the small-gain result issued from the Hamiltonian

function

H(xt) = S(x)−
∫ t

0
s(x(τ), x(τ − h))dτ (2.72)

where S(x) = x(t)TPx(t) is the storage function and the supply-rate is given by

s(x(t), x(t− h)) =
[

x(t)
x(t− h)

]T [ −L 0
0 L

] [
x(t)

x(t− h)

]

In the dissipativity framework, if the derivative Ḣ of the Hamiltonian function H is
negative definite then this means that the interconnected system (2.71) is asymptotically
stable and hence (2.27) is delay-independent stable. Differentiating H along the trajectories
solution of system (2.71) gives

Ḣ :=
[

x(t)
x(t− h)

] [
ATP + PA+ L PAh

? −L

] [
x(t)

x(t− h)

]
≺ 0 (2.73)

Finally we obtain the following theorem:

Theorem 2.2.23 System (2.40) is delay-independent asymptotically stable if there exist ma-
trices P = P T � 0 and L = LT � 0 such that the LMI

[
ATP + PA+ L PAh

? −L

]
≺ 0 (2.74)

holds.

It is easy to recognize the LMI obtained by application of the Lyapunov-Krasovskii theo-
rem with Lyapunov-Krasovskii functional

V (xt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TLx(θ)dθ (2.75)
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as detailed in paragraph on page 96. This suggests that the Hamiltonian function H coincides
with the above Lyapunov-Krasovskii functional. This is proved in what follows.

First of all rewrite H as

H(xt) = x(t)TPx(t) +
∫ t

0
(x(s)TLx(s)− x(s− h)TLx(s− h))ds

= x(t)TPx(t) +
∫ t

0

∫ s

s−h
Y (τ)dτds

where Y (t) =
d

dt
(x(t)TLx(t)).

Now let τ ′ = τ − s+ h and in this case we have

H(xt) = x(t)TPx(t) +
∫ t

0

∫ h

0
Y (τ ′ + s− h)dτ ′ds

Now exchanging the order of integration yields

H(xt) = x(t)TPx(t) +
∫ h

0

∫ t

0
Y (τ ′ + s− h)dsdτ ′

= x(t)TPx(t) +
∫ h

0

(
x(τ ′ + t− h)TLx(τ ′ + t− h)− x(τ ′ − h)TLx(τ ′ − h)

)
dτ ′

Assuming zero initial conditions (i.e. x(s) = 0 for all s ≤ 0 hence Y (s) = 0 for all s ≤ 0) then
we have ∫ h

0
x(τ ′ − h)TLx(τ ′ − h)dτ ′ = 0

and hence H(xt) reduces to

H(xt) = x(t)TPx(t) +
∫ h

0
x(τ ′ + t− h)TLx(τ ′ + t− h)dτ ′ (2.76)

Finally let θ = τ ′ + t− h and thus we obtain

H(xt) = x(t)TPx(t) +
∫ t

t−h
x(θ)TLx(θ)dθ (2.77)

and Lyapunov-Krasovskii functional (2.75) is retrieved.
In [Zhang et al., 2001] the relation between Lyapunov-Krasovskii and small-gain results for

time-delay, in general, is also emphasized. In [Bliman, 2001], less delay-independent stability
tests are provided, based on extension of Lyapunov-Krasovskii functions which can also be
viewed as an extension of small-gain based results introduced in this paragraph.

Delay-Dependent Stability Test using Scaled Small-Gain Theorem

According to operator Sh(·), system (2.27) is rewritten as

ẋ(t) = (A+Ah)x(t)−Ahw(t)
z(t) = (A+Ah)x(t)−Ahw(t)
w(t) = Sh(z(t))

(2.78)
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This reformulation is identical to the Euler model transformation (see Section 2.2.1.2) and
then adds additional dynamics (see Section 2.2.1.3). Hence systems (2.27) and (2.78) are not
equivalent. The operator Sh is LTI and it has be shown that it is stable; therefore it has
finite H∞ norm. First, note that the corresponding transfer function is given by

Ŝh(s) =
1− e−sh

s
(2.79)

The H∞ norm γ∞ is defined as

γ∞ := sups∈C+

∣∣∣∣
1− e−sh

s

∣∣∣∣ = supω∈R

∣∣∣∣∣
1− e−jωh

jω

∣∣∣∣∣

= supω∈R

∣∣∣1− e−jωh
∣∣∣

ω
= limω→0+

∣∣∣1− e−jωh
∣∣∣

ω
= h ≤ h̄

(2.80)

For any h ∈ [0, h̄], the worst-case H∞ norm of the operator Sh is h̄. This interesting fact
allows to express delay-dependent result from scaled small-gain theorems. Define the storage
function S(x) = xTPx and the supply-rate

s(ẋ(t), x(t), x(t− h)) =
[

ẋ(s)
x(s)− x(s− h)

]T [
h̄L 0
0 −L

] [
ẋ(s)

x(s)− x(s− h)

]
(2.81)

to construct the Hamiltonian function

H(ẋ, xt) = S(x)−
∫ t

0
s(ẋ(τ), x(τ), x(τ − h))dτ (2.82)

Finally differentiating H along the trajectories solution of system (2.78) leads to the following
theorem.

Theorem 2.2.24 System (2.40) is delay-dependent asymptotically stable for all h ∈ [0, h̄] if
there exist matrices P = P T � 0 and L = LT � 0 such that the LMI




(A+Ah)TP + P (A+Ah) −PAh (A+Ah)TL
? −h̄L −AThL
? ? −L


 ≺ 0 (2.83)

holds.

A connection between Lyapunov-Krasovskii functionals and small-gain results has also
been provided in [Zhang et al., 2001] in the delay-dependent framework.

2.2.1.7 Stability Analysis: Padé Approximants

Still in the family of approaches considering a time-delay system into an interconnection of two
subsystems, namely a finite dimensional system and a delay operator, the method provided
in [Zhang et al., 1999] is of great interest. This method actually holds only for constant delay
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but leads to very interesting delay-dependent stability results that deserve to be presented.
The system that will be considered is given below

ẋ(t) = Ax(t) +Ahx(t− h)
x(θ) = φ(θ), θ ∈ [−h, 0]

(2.84)

It is rewritten as in (2.71):

ẋ(t) = Ax(t) +Ahw(t)
z(t) = x(t)
w(t) = Dh(z(t))

(2.85)

Since Dh is a time-invariant linear operator, the corresponding transfer function is then

Hd(s) :=
W (s)
Z(s)

= e−sh − 1 (2.86)

Due to the complexity of exponential term, Zhang et al. [1999] propose to approximate
the delay operator by a parameter dependent filter coinciding with the Padé approximant of
e−sh (see Appendix F.4). The idea of using Padé approximants to deal with time-delay is not
new and the reader should refer for instance to [Lam, 1990, Saff and Varga, 1975]) but the
current solution is interesting since it involves LMIs.

Formally, Padé approximants aim at approximating continuous functions, over a certain
domain, by a rational function and this is the reason why it is an interesting tool in systems
and control theory. Indeed, as a transfer function should be (strictly) proper, power series
for instance cannot be applied as an approximant but Padé approximants can.

From this approximation, the system can be rewritten into an interconnection of a finite
dimensional LTI system and a parameter dependent filter (i.e. the Padé approximation).

Let us consider system (2.84) and define the matrices Ā = A + Ah and Ah = HF where
H,F are full-rank factors of Ah. Let Ψ(s, h) = det(sI − A − Ahe−sh) be the characteristic
quasipolynomial of (2.84). It is well-known that system (2.84) is asymptotically stable for all
h ∈ [0, h̄] if and only if

Ψ(jω, h) 6= 0, ∀ω ≥ 0, h ∈ [0, h̄]

Assuming that G = F (sI − Ā)−1H and Φ(hs) = (e−hs − 1)I, it is possible to rewrite the
system as an interconnection of these two subsystems and then the delay-dependent stability
condition is equivalent to the following statement:

det[I −G(jω)Φ(jωh)] 6= 0, ∀ω ≥ 0, h ∈ [0, h̄] (2.87)

Since this statement is very difficult to be checked exactly, then the idea is to provide an
inner and outer approximation of the set defining the set of delay-operators for each delay
from 0 to h̄

ΩA(ω, h̄) :=
{
e−jωh : h ∈ [0, h̄]

}
(2.88)

Using the Padé approximation, the inner and outer sets are given by

ΩB(ω, h̄) :=
{
Rm(jθαmω) : θ ∈ [0, h̄]

}

ΩC(ω, h̄) :=
{
Rm(jθω) : θ ∈ [0, h̄]

} (2.89)
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where Rm(s) =
Nm(s)
Nm(−s) is the mth order (m ≥ 3) Padé approximation of es and

αm :=
1

2π
min{ω > 0 : Rm(jω) = 1}

The following lemma, proved in [Zhang et al., 1999], is useful for comprehensive purpose

Lemma 2.2.25 For every integer m ≥ 3, the following statements hold:

1. All poles of Rm(s) are in the open left half complex plane.

2. ΩC(ω, h̄) ⊆ ΩA(ω, h̄) ⊆ ΩB(ω, h̄), ∀ω ≥ 0.

3. limm→+∞ αm = 1

This result says that the Padé approximmation Rm(s) is a stable operator but, overall that
the greater the order is, the better the approximation of the set is. Indeed, if the condition

det[I −G(jω)Rm(jθω)] 6= 0, ∀ω ≥ 0, θ ∈ [0, h̄] (2.90)

is a necessary condition for stability since ΩC(ω, h̄) is included in ΩA(ω, h̄). On the other
hand, since ΩB(ω, h̄) contains ΩA(ω, h̄), therefore

det[I −G(jω)Rm(jθαmω)] 6= 0, ∀ω ≥ 0, θ ∈ [0, h̄] (2.91)

is a sufficient condition only. But when m→ +∞ then αm → 1 and hence the sets ΩB(ω, h̄)
and ΩC(ω, h̄) converge to each other, to finally coincide with ΩA(ω, h̄) showing that, at
infinity, the stability of the interconnected system over ΩA(ω, h̄), ΩB(ω, h̄) and ΩC(ω, h̄) are
equivalent.

Since we are interested in a delay-dependent stability sufficient condition, the set ΩB(ω, h̄)
is considered. Let (AP , BP , CP , DP ) be the minimal realization of P (s) := (Rm(αms) − 1)I
and denote nP be the order of AP . Note that in P (s) the set ΩB(ω, h̄) is considered due to
the presence of αm. Also introduce As := Ā + HDPD, Bs := BPF and Cs := HCP . Using
this formulation, Zhang et al. [1999] provide this very interesting result:

Theorem 2.2.26 System (2.84) is delay-dependent asymptotically stable for all h ∈ [0, h̄] if
there exist matrices X0 ∈ Sn++, X22 ∈ SnP

++ and X1 ∈ Rn×n, X12 ∈ RnP×nP such that

Π(0) ≺ 0, Π(h̄) ≺ 0

and [
X0 + h̄X1 h̄X12

? h̄X22

]
� 0

where

Π(θ) :=
[

Π11(θ) Π12(θ)
? Π22(θ)

]

with

Π11(θ) := (X0 + θX1)As +X12Bs +ATs (X0 + θX1)T +BT
s X

T
12

Π12(θ) := (X0 + θX1)Cs +X12AP + θATsX12 +BT
s X22

Π22(θ) := θXT
12Cs + θCTs X12 +X22AP +ATPX22
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While considering system (2.11), using the latter theorem with m = 5 the delay margin is
estimated as h̄ = 6.150 while the actual delay margin is 6.172. The computed delay-margin is
very close to the theoretical one. This result, in year 2000, leads to very good result compared
to existing works and this result is still competitive with recent works. Many results based
on ’complete’ discretized Lyapunov-Krasovskii functionals lead to similar result but with a
larger computational complexity.

It is worth noting that in this approach a model transformation is used (expressed through
the operator e−sh − 1) but does not introduce any conservatism (i.e. additional dynamics).
The only constraint imposed by the method is the asymptotic stability of the system for zero
delay (since the matrix Ā needs to be Hurwitz). This is not a problem since stability over an
interval including 0 is sought. For a more general approach using similar results, the reader
should refer to [Knospe and Roozbehani, 2006, 2003, Roozbehani and Knospe, 2005].

2.2.1.8 Stability Analysis: Integral Quadratic Constraints

The approach based on Integral Quadratic Constraints (IQC) [Rantzer and Megretski, 1997]
has led to more and more interest since they provide an efficient way to study stability of
a wide variety os systems, including time-delay systems [Fu et al., 1998, Jun and Safonov,
2001, 2002, Kao and Rantzer, 2007]. The key idea behind IQC analysis is the L2 stability of
an interconnected system. Indeed, if for exogenous L2 inputs, the loop-signals have bounded
energy this means that the interconnection of systems is stable. The reader should refer to
Section 1.3.4.6 for some brief explanations on IQC method.

Part of the results of [Kao and Rantzer, 2007], in the constant-delay case, is presented
here. Indeed, Kao and Rantzer [2007] has provided very efficient criteria for stability analysis
of time-delay systems which leads to impressive results, sometimes very near of the theoretical
ones. Let us consider the delay-operators

x(t)− x(t− h) := Sh(x(t))
x(t− h) := Dh(x(t))

(2.92)

Note that these delay operators are equivalent those proposed, for instance, in [Zhang et al.,
1999]. But the operators above can be extended to the time-varying delay case while the
use of Padé approximation restricts the approach to constant delay case. This suggests that
the IQC approach provided by Kao and Rantzer [2007] can be viewed as a generalization
of the approach of [Zhang et al., 1999] to the time-varying delay case, although different
techniques are used to study stability. Another comparison can be made between results that
can be obtained with scaled-small gain, IQC techniques [Jun and Safonov, 2001, 2002] and
Lyapunov-Krasovskii functionals which lead to similar (even identical) stability tests.

Using these operators, time-delay system (2.84) can be rewritten as an interconnection of
two subsystems:

ẋ(t) = (A+Ah)x(t)−Ahw(t)
z(t) = x(t)
w(t) = Sh(z(t))

(2.93)

In the IQC analysis, the operators involved in the interconnections are defined by their
input/output behavior through IQC. The following propositions introduce one IQC for each
operator:
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Proposition 2.2.27 The operator Dh satisfies the IQC defined by

∫ +∞

−∞

[
v(t)

Dh(v(t))

]T [
X 0
0 −X

] [
v(t)

Dh(v(t))

]
dt ≥ 0 (2.94)

for any X1 = XT
1 � 0.

Proposition 2.2.28 Suppose h ∈ [0, h̄], then the operator Sh satisfies any IQC defined by

∫ +∞

−∞

[
v(t)

Sh(v(t))

]T [ |ψ(jω)|2Y 0
0 −Y

] [
v(t)

Sh(v(t))

]
dt ≥ 0 (2.95)

for any Y = Y T � 0 and where |ψ(jω)| ≥ g(ω) + δ, for all ω ∈ R. The function g(ω) is
defined below

g(ω) :=





2 if |ω| > π

h̄

2| sin
(
ωh̄

2

)
if |ω| ≤ π

h̄

(2.96)

A good example of ψ(s) satisfying the above conditions is

ψ(s) = 2
h̄2s2 + ch̄s

h̄2s2 + ah̄+ b
+ δ (2.97)

where a =
√

6.5 + 2b, b =
√

50, c =
√

12.5 and δ is an arbitrary small positive number.

Using these two IQCs (in the constant delay case), the criterium obtained from the KYP
Lemma (see Appendix E.3 and Section 1.3.4.6) leads to a computation of the theoretical
the delay margin (or very near) for system (2.11). This result is very effective since the
model transformation used to rewrite the time-delay system as an interconnection of a linear
system and the delay operator Sh(x(t)) does not introduce any additional dynamics. Hence
the interconnected system is completely equivalent to the original system. Moreover, the
characterization of the operator Sh in terms of IQCs is sufficiently tight to remove any
conservatism. Finally, in this case, performance analysis would be exact by analyzing the
interconnected system.

This makes, at this time and from my point of view, the best numerical tool to analyze
stability of a time-delay system since, compared to approaches such as discretized functionals
(see [Gu et al., 2003]) or Padé approximation (see [Zhang et al., 1999]), the computational
complexity is very low and the method allows for an easy extension to time-varying delays.

Example 2.2.29 As an example let us consider the system

ẋ(t) =
[
−2 0
0 −0.9

]
x(t) +

[
−1 0
−1 −1

]
x(t− h(t)) (2.98)

where the delay satisfies ḣ ≤ µ. It is shown in [Kao and Rantzer, 2007] that the IQC approach
presented above leads to the results of Table 2.2.29 using the IQCβ toolbox [Jonsson et al.,
2004]. Clearly, the result obtained for µ = 0 is very close to the theoretical one and is computed
with only two decision variable introduced by the use of two IQCs. This demonstrates the
possibilities of the approach in terms of computational complexity and efficiency.
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µ 0 0.1 0.2 0.5 0.8 0.999
[Kim, 2001] 1 0.974 0.883 0.655 0.322 0.001

[Wu et al., 2004] 4.4772 3.604 3.033 2.008 1.364 1.001
[Fridman and Shaked, 2002a] 4.4772 3.604 3.033 2.008 1.364 1.001

[Kao and Rantzer, 2007] 6.117 4.4714 3.807 2.280 1.608 1.360

Table 2.1: Comparison of different stability margins of system (2.98) with respect to the
upper bound µ on the derivative of the delay h(t)

2.2.1.9 Stability Analysis: Well-Posedness Approach

Finally, the section on stability analysis of time-delay systems is ended by the stability analysis
through well-posedness analysis of interconnections; see Section 1.3.4.4, on page 58 or [Iwasaki
and Hara, 1998] for more details on well-posedness of feedback systems.

The result provided here is borrowed from [Gouaisbaut and Peaucelle, 2006a] and is an
application of results on well-posedness to the interconnection of an uncertain matrix and an
implicit linear transformation (see [Peaucelle et al., 2007]) as we will see below:

Let us consider the interconnected system:

w = ∆(z + v)
Ez = H(w + u)

(2.99)

where w, z are loop signals, u, v exogenous input signals and ∆ the uncertain matrix. The
corresponding set-up is depicted in Figure 2.2.

Ez = H(w + u)

∆

u?--

u�

6

�

u

v

z

w +

+

+

+

Figure 2.2: Interconnection of the uncertain matrix ∆ and the implicit linear transformation
Ez = H(w + u)

The following result on stability of (2.99) has been proved in [Peaucelle et al., 2007].

Theorem 2.2.30 The closed-loop system (2.99) is well-posed if and only if there exists an
Hermitian matrix X = X∗ such that

[
EE~ −H

]∗
⊥X

[
EE~ −H

]
⊥ � 0 (2.100)

[
0 I

∆E⊥ ∆E~

]∗
X

[
0 I

∆E⊥ ∆E~

]
� 0 for all ∆ ∈∆ (2.101)
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where ∆ is the set of uncertainties, E◦ denotes a full-rank matrix whose columns span the
same space as the columns of E and E~ = E◦∗. Moreover, if E and H are real, the equivalence
still holds for X restricted to be real.

We aim here at developing a simple delay-dependent stability result from the latter theo-
rem. Define

E =



In 0 0
0 In 0
In 0 −In


 H =




A Ah 0
In 0 0
−In In hIn


 ∆(s) =




s−1In 0 0
0 e−shIn 0

0 0
1− e−sh
sh

In




(2.102)
By substituting these matrices into (2.99) it can be shown that system (2.84) is retrieved.

We aim now at giving sufficient conditions of stability using Theorem 2.2.30.
Inequality (2.101) is always verified if X is chosen as

X =




0 0 0 −P 0 0
? −Q 0 0 0 0
? ? −R 0 0 0
? ? ? 0 0 0
? ? ? ? Q 0
? ? ? ? ? R




(2.103)

where P = P T � 0, Q = QT � 0 and R = RT � 0. In this case, (2.100) is equivalent to LMI
(2.66) obtained with a Lyapunov-Krasovskii functional. This result has been extended, in a
similar fashion as of [Bliman, 2002], to obtain a more accurate delay margin in [Gouaisbaut
and Peaucelle, 2006a,b]) by considering higher order derivatives. However this has been
provided for constant delays only and Ariba and Gouaisbaut [2007] have extended the results
to the time-varying delay case.

The key idea in well-posedness based results is to use Taylor expansions to approximate the
time-varying delay operator and the greater the order of the Taylor expansion is, the smaller
the conservatism is. While the approach of Zhang et al. [1999] considers the frequency domain,
the approach of Ariba and Gouaisbaut [2007], Gouaisbaut and Peaucelle [2006b] lies in the
time-domain and hence allows for time-varying delays.

2.2.2 Robustness with respect to delay uncertainty

Stability with respect to delay uncertainty is an important problem which is still not really
investigated. Some papers are devoted to or use results on robust stability analysis with
respect to delay uncertainty [Kharitonov and Niculescu, 2003, Michiels et al., 2005, Sename
and Briat, 2006, Verriest et al., 2002]. The idea (interest) behind of robust stability of systems
with uncertain delay is double:

• Assuming that the stability of the system (2.104) is known for a nominal delay value h0

the maximal deviation δ from this nominal value for which the system remains is stable
is sought. Therefore the system will be shown to be stable for any delay belonging to
[h0 − δ+, h0 − δ−]. In the case of a time-varying delay, the bound on the derivative of
the variation η can also be considered.
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ẋ(t) = Ax(t) +Ah(x− h0 + θ(t)), θ(t) ∈ [δ−, δ+], |θ̇| < η (2.104)

• Assuming that a controlled time-delay system (with delay h) by a controller with mem-
ory but involving a different time-delay value, say hc, takes the form (2.105). The
implemented delay hc can be decomposed into a sum of the real delay h and an un-
certain value θ, representing the knowledge error on the delay value. In this case, the
closed-loop system (2.105) involves two-delays which are interrelated by the latter equal-
ity. Here also, the delays can be chosen time-varying and a bounds on the derivatives
η, ν can be taken into account:

ẋ = Ax(t) +A1
hx(t− h(t)) +A2

hx(t− h(t)− θ(t))
h(t) ∈ [0, hmax], |ḣ| < η, θ(t) ∈ [−δ, δ], |θ̇| < υ

(2.105)

In both case, some solutions exist and expressed in both frequency and time domains.
Indeed, the frequency domain approaches are restricted to deal with constant time-delay
while time-domain are not. In the following, we aim at providing 4 methods covering the all
the possible scenarios.

2.2.2.1 Frequency domain: Matrix Pencil approach

The approach provided here has been introduced in the nice paper proposed by [Kharitonov
and Niculescu, 2003]. The idea is to analyze the stability of perturbed delay system, assuming
the stability of the nominal one. The interest of this approach is to provide necessary and suf-
ficient conditions in terms of generalized eigenvalue distribution of some (finite dimensional)
constant matrix pencil.

Let us consider system (2.104) with constant delays h− θ which is assumed to be stable
for θ = 0. Hence this means that the characteristic quasipolynomial

det(sIn −A−Ahe−sh) = 0

has no solutions with <(s) ≥ 0. Consider now

det(sIn −A−Ahe−s(h−θ)) = 0

and in this case we are interested to find all terms ζ := h− θ such that

det
(
jωI −A−Ahe−jωζ

)
6= 0, ∀ω ∈ R (2.106)

Note that if (2.106) is guaranteed for all ζ ≥ 0 then the system is delay independent stable and
else we have a delay-dependent stability result. The following theorem proved in [Kharitonov
and Niculescu, 2003] is based on matrix pencils [Chen et al., 1995, Niculescu, 2001] and
provides a necessary and sufficient condition to stability of uncertain system (2.106).

Theorem 2.2.31 The linear time-delay system (2.104) with constant delay perturbation θ is
robustly stable if and only if the nominal system (2.104) is stable (i.e. for θ = 0) and the
following inequality hold

h− inf{β : (β, α) ∈ Πh,+} < θ < h− sup{β : (β, α) ∈ Πh,−} (2.107)
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where

Π(z) = z

[
Ip 0
0 φ⊗(Ah, In)

]
+
[

0 −Ip
φ⊗(In, ATh ) φ⊕(A,AT )

]
(2.108)

Πh,+ =
{

(hki
, αk) : hki

=
αk
ωki

> h : e−jαk ∈ σ̃(Π), jωki
∈ σ̃

(
A+ e−jαkAh

)
− {0},

1 ≤ k ≤ 2p, 1 ≤ i ≤ n
}

Πh,− =
{

(hki
, αk) : hki

=
αk
ωki

< h : e−jαk ∈ σ̃(Π), jωki
∈ σ̃

(
A+ e−jαkAh

)
− {0},

1 ≤ k ≤ 2p, 1 ≤ i ≤ n
}

(2.109)
where σ̃(·) denotes the set of (generalized) eigenvalues of corresponding matrix (pencil) and
φ⊗, φ⊕ correspond to the following special matrix tensor product and sum, see Appendix A.5
or [Niculescu, 2001].

This result could be used to analyze stability for systems of the form where two delays
are interrelated by an equality and this deserves future attention. . .

2.2.2.2 Frequency domain: Rouché’s Theorem

The Rouché’s Theorem, a celebrated result of complex analysis [Levinson and Redheffer, 1970]
allows to compute a bound on the variation on the delay for systems of the form (2.105). It
provides a sufficient condition only but a bound can be easily computed from the computation
of norms of operators. It has been employed in [Sename and Briat, 2006, Verriest et al., 2002].

The Rouché’s Theorem [Levinson and Redheffer, 1970] is recalled for reader ease and the
proof is provided in Appendix F.7:

Theorem 2.2.32 Given two functions f and g analytic (holomorphic) inside inside and on
a contour γ. If |g(z)| < |f(z)| for all z on γ, then f and f + g have the same number of roots
inside γ.

Let us consider system (2.105) with constant delay. We tacitly assume that it is asymp-
totically stable system for h = hc, i.e.

ẋ(t) = Ax(t) + (A1
h +A2

h)x(t− h)

is asymptotically stable.
Since we have hc = h+ θ hence we can write

e−shc = e−sh + (e−s(h+θ) − e−sh) = e−sh(1−∆(s)) (2.110)

where ∆(s) = 1− e−sθ. The characteristic quasipolynomial of the closed-loop system is given
by

χ(s) = det(sI −A−A1
he
−sh −A2

he
−shc)

= det(sI −A−A1
he
−sh −A2

he
−sh(1−∆(s)))

= det((sI −A−A1
he
−sh −A2

he
−sh) +A

(2)
h e−sh∆(s))

= det(Ψ(s)) det(I + Ψ(s)−1A2
he
−sh∆(s))

(2.111)

where Ψ(s) = sI −A−
(
A1
h +A2

h

)
e−sh.
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As the ’exact’ design gives a stable system then det(Ψ(s)) does not change sign when
s sweeps the imaginary axis. Then the perturbed closed-loop remains stable if det(1 +
Ψ(s)−1A2

h∆(s)) does not change sign for all s = jω, ω ∈ R.
Invoking Rouché’s theorem (see appendix F.7) it follows that a stability condition is

∣∣∣
∣∣∣Ψ(s)−1A2

he
−sh∆(s)

∣∣∣
∣∣∣
∞
< 1 (2.112)

First recall that |∆(s)| ≤ |δhs| ≤ δ+
h |s| for all s = jω, ω ∈ R and where δ+

h is an upper
bound on the absolute value of delay uncertainty. Finally we have

∣∣∣
∣∣∣Ψ(s)−1A2

he
−sh∆(s)

∣∣∣
∣∣∣
∞
≤ δh

∣∣∣
∣∣∣Ψ(s)−1A2

he
−shs

∣∣∣
∣∣∣
∞

(2.113)

and gives the following bound preserving stability

θh < 1/||Ψ(s)−1A
(2)
h e−shs||∞ (2.114)

Hence, for any θ ∈ [−θh, θh], the determinant has fixed sign, implying the absence of zero
crossings, and henceforth the stability of the perturbed system (provided the nominal one is
stable). This approach allows to give an analytic bound on the delay error value but when
done in the stabilization framework, it is difficult to address a robust stabilization problem
directly since the analysis has to be done a posteriori (on the closed-loop system). For this
reason, the development of an iterative algorithm seems to be a difficult task.

2.2.2.3 Time-Domain: Small Gain Theorem

Time-domain methods have interesting properties, first they allow for time-varying delays
and second it is possible to consider the uncertainty on the delay in the synthesis framework,
guaranteeing a prescribed bound on the delay uncertainty. The first method to be investigated
is an application of the small-gain theorem.

Note that it is possible to rewrite system (2.105) using Euler transformation as

ẋ(t) = Ax(t) + (A1
h +A2

h)x(t− h(t))− δ+A2
hw(t)

z(t) = ẋ(t)

w(t) =
1
δ+

∫ t−h(t)

t−hc(t)
z(s)ds

(2.115)

With a similar reasoning as of [Gu et al., 2003], the H∞ norm of the integral operator can
be bounded by δ+

h and hence a simple application of the scaled small gain theorem allows to
provide a robustness analysis by considering the Hamiltonian function

H(xt) = S(xt)−
∫ t

0

[
x(s− h(s))− x(s− hx(s))

ẋ(s)

]T [
L 0
0 −L

]
(?)T (2.116)

where S(x) is the storage function and the integral is the dissipativity condition related to
scaled-small gain. Note that any Lyapunov-Krasovskii functional may play the role of the
storage function S(x). A similar results has been provided in [Gu et al., 2003] where a time-
varying delay is approximated by a constant one and where the uncertainty represents the
time-varying part.
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2.2.2.4 Time-Domain: Lyapunov-Krasovskii functionals

Since the scaled-small gain theorem may lead to conservative results it would be more conve-
nient to use a Lyapunov-Krasovskii approach to deal with such a problem of stabilization with
incorrect delay value. Considering again system (2.105), the Lyapunov-Krasovskii functional

V (xt) = Vn(xt) + Vu(xt)

Vn(xt) = x(t)TPx(t) +
∫ t

t−h
x(s)TQx(s)ds+

∫ 0

−h

∫ t

t+β
ẋ(s)TRx(s)dsdβ

Vu(xt) =
∫ t

t−hc

x(s)TSx(s)ds+
∫ δ+

δ−

∫ t

t+β−h
ẋ(s)T ẋ(s)dsdβ

(2.117)

can lead to a robust stability analysis criterium for system (2.105). This will be detailed in
Section 3.7. Note that Kharitonov and Niculescu [2003] have also provided a solution in terms
of a complete Lyapunov-Krasovskii functional for such a goal.

2.3 Chapter Conclusion

This ends the section about time-delay systems and their stability analysis. A brief first
section has been devoted to different types of time-delay systems representations: systems
over a ring, infinite-dimensional systems over a abstract space and functional differential
equations. The latter representation has been chosen so to be considered since many tools
exist, such as Lyapunov-Krasovskii theorem, and can be extended to LPV case.

In Appendix G, simple methods for constant delays are provided for curiosity purpose
only, in order to show that frequency domains exist and that they can provide necessary and
sufficient conditions for stability. Since these methods cannot be extended to the time-varying
delay case, time-domain approaches have been privileged in this chapter since they apply
very well to LPV time-delay systems. Even if all examples of criteria have been developed
for systems with constant delays, most of them can be, more or less easily, extended to time-
varying delays (except Padé approximation which is actually extended, in a somewhat certain
sense, either in [Gouaisbaut and Peaucelle, 2006a] or [Kao and Rantzer, 2007] as explained in
the above section).

Among time-domain techniques, fundamental theorems extending Lyapunov’s theory have
been provided and illustrated through examples of stability tests. While Lyapunov-Razumikhin
is a simple test involving to the use of function, the Lyapunov-Krasovskii employs func-
tionals. However, while Lyapunov-Razumikhin tests are not LMIs, Lyapunov-Krasovskii
tests are and provide more general results. This has been illustrated that the Razumikhin
delay-independent stability test is a particular case of the Krasovskii one. The evolution
of Lyapunov-Krasovskii criteria has been discussed by a successive introduction of model
transformations, additional dynamics and the problem of cross-terms.

Scaled small gain can be used to develop stability criteria for time-delay systems and
a connection between Lyapunov-Krasovskii results has been emphasized. Moreover, these
results have also been derived in the IQC framework in [Jun and Safonov, 2001].

A technique based on a an approximation of the delay element by Padé approximants has
been presented and shown as an interesting and efficient technique but limited to constant
delay-case.
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In order to relieve this lack, IQC techniques using the efficient input/output behavior
point of view provide very tight solution to the stability analysis of time-delay systems using
same operators as in [Zhang et al., 1999] but extended in the time-varying case.

Then, a recent result based on well-posedness has been introduced and is related to recent
results based on Lyapunov-Krasovskii functionals.

Finally, results about robust stability of systems with respect to delay uncertainty have
been provided as a anticipation of next use in this thesis. Both frequency and time domain
techniques have been provided as point of comparison.

All the time-domain techniques have not been introduced in this section and, as an open-
ing, the reader should refer to [Briat et al., 2007a, 2008b, Gouaisbaut and Peaucelle, 2007,
Han and Gu, 2001, He et al., 2007, Jiang and Han, 2006, 2005, Kharitonov and Niculescu,
2003, Knospe and Roozbehani, 2006, 2003, Michiels et al., 2005, Roozbehani and Knospe,
2005] and references therein for other techniques. Among them it is important to distinguish
range-stability analysis which addresses the problem of finding a compact set of delay value,
possibly not including 0, for which the system is stable (similarly as for robustness analysis
with delay uncertainty). Most of these results are based on Lyapunov-Krasovskii functionals
or approximation of delay elements.





Chapter 3

Definitions and Preliminary Results

T
his chapter aims at introducing some basic concepts and fundamental results used
along the thesis. It contains contribution contained below.

Section 3.1 provides redundant notions such as delay and parameter spaces and the class
of LPV time-delay systems under consideration throughout this thesis. These definitions are
quite common and the relevance of such sets will be emphasized briefly as a justification.
Finally an example of LPV time-delay is given in order to motivate the interest of our work
on this kind of systems.

Section 3.2 will provide a new relaxation method for polynomially parameter dependent
Linear Matrix Inequalities. Indeed, it is well known that parametrized LMIs consist in an
infinite (uncountable) number of LMIs that have to be satisfied. When the dependence is
linear a convex argument, as used in the polytopic approach (see Section 1.3.2) allows to
conclude on the feasibility of the whole set of LMIs only by considering a particular finite set
of LMIs (actually the LMIs evaluated at the vertices of the convex polyhedral set containing
parameters values). On the other hand, when the dependence is polynomial it is not necessary
and sufficient to consider the vertices of the set of values of the parameters. Indeed, such a
relaxation can only be done under certain strong assumptions on the degree of polynomials
and some matrices. There exists different approaches to solve very efficiently and accurately
this type of problems (see Sections 1.3.3.2, 1.3.3.3 and 1.3.3.4). We will provide here a new
one based on spectral factorization of parameter dependent matrices and the Finsler’s lemma
(see Appendix E.16). This approach will turn the polynomially parameter dependent LMI
into a slightly more conservative LMI involving ’slack’ variables. Such a LMI will have the
interest of having a parameter linear dependence on which convex relaxation can be applied
without any conservatism. Such an approach has been introduced in [Briat et al., 2008b].

Section 3.3 is devoted to the development of a new relaxation for concave nonlinearity of
the form −αTβ−1α with β = βT � 0 in negative definite LMIs. Several approach to deal
with such non linearities have been provided in the literature: the hyperplane bound and
an application of the cone complementary algorithm. While the first one is too conservative
since it corresponds to a linearization of the nonlinearity around some fixed point, the second
one cannot be applied on parameter-varying matrices. These two limitations motivated us to
introduce a new method based on the introduction of a ’slack’ variable with the drawback of
keeping a nonlinear structure of the problem (the problem becomes BMI). However, even if
the structure remains complex and cannot be efficiently solved by interior point algorithms
as LMIs, it has a nicer form that the initial problem and can be efficiently solved with

119
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iterative LMIs procedures. A discussion is then provided in order to explain the algorithm,
its initialization step and optimality gap compared to the initial problem.

Section 3.4 aims at providing a simple algebraic approach in order to compute bounds
on the rate of variation of parameters in the polytopic framework. Indeed, in the literature,
most of the approaches consider LPV polytopic systems with unbounded parameter variation
rates which is rather conservative since it consider constant Lyapunov functions and hence
conclude on quadratic stability. When a general parameter dependent system is turned into
a polytopic formulation, the values and the dependence is hidden into the new parameters
since a mix of all parameters is performed. From this consideration it is difficult to make
a correspondence between the derivative of the initial parameters and the derivative of the
polytopic parameters. This section provides then a simple methodology to compute these
bounds.

Section 3.5 aims at providing a simple stability/performances test expressed through pa-
rameter dependent LMIs for LPV time-delay systems. This approach is based on the use of a
simple Lyapunov-Krasovskii functional which has been introduced for instance in [Gouaisbaut
and Peaucelle, 2006b, Han, 2005a]. This result has the benefit of being interesting from a
computational point of view since it involves a few matrix variables and no model transfor-
mation is employed. However, it is difficult to use it for synthesis purposes and this motivates
the development of an associated relaxation leading to another LMI which can be efficiently
used to design controllers and observers.

Section 3.6 extends the ’simple’ approach to a discretized version of a ’complete’ Lyapunov-
Krasovskii functional. The same relaxation scheme is then applied in order to get LMI adapted
to design objectives.

Finally, Section 3.7 develops a new Lyapunov-Krasovskii functional for systems with two
delays where the delays satisfy an algebraic constraint. Such configuration occurs whenever
a time-delay system is controlled/observed by a controller/observer with memory implement-
ing a delay which is different from the system delay. In this case it is important to take
into account this specific problem in order to ensure robustness of the closed-loop stabil-
ity/performances.

3.1 Definitions

This section is devoted to the introduction of the definitions which will be used along the
thesis. First of all, delay spaces under consideration will be defined. Restrictions on these
sets will be introduced and justified through simple examples. Then, parameters sets will
be introduced and a particular class, the delayed parameters, will be introduced and their
properties analyzed (continuity, differentiability, set of values. . . ). Finally, the class of LPV
systems which will be analyzed in the thesis will be introduced with an example of a milling
process borrowed from [Zhang et al., 2002].

3.1.1 Delay Spaces

We will consider throughout this thesis several delay spaces. Each delay-space considers a
particular stability result: delay-dependent/independent and rate dependent/independent.
Due to the large diversity of these spaces, only some of them are described below:
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H1 :=
{
h ∈ C1(R+, [hmin, hmax]) : |ḣ| < µ

}
(3.1)

which defines bounded delay with bounded derivative. It is assumed that when µ = 0 then
the delay is constant. We will denote further the set H ◦

1 the particular case when hmin = 0.
Then,

H2 := {h : R+ → [hmin, hmax]} (3.2)

defines the set of bounded delays with unbounded derivatives. We will denote further the set
H ◦

2 the particular case when hmin = 0. Then,

H3 :=
{
h ∈ C1(R+,R+) : |ḣ| < µ

}
(3.3)

defines the set of unbounded delays with bounded derivatives. Finally,

H4 := {h : R+ → R+} (3.4)

corresponds to the set of unbounded delays with unbounded derivatives.
Among them, the most relevant and useful sets are H1 and H2. In many cases, H2 is

useful when no information is available on the rate of variation of the delay and then no
constraint can be considered. On the second hand, when dealing with delays with bounded
derivatives the Lyapunov-Krasovskii functional approach can only be used whenever the delay
derivative in less than 1 (or in some cases between -1 and 1), which is very constraining since
it appears to be difficult to deal with between delay derivatives between 1 and +∞. Model
transformations can be used in order to deal with such cases; see for instance [Gu et al., 2003,
Jiang and Han, 2005, Shustin and Fridman, 2007].

The argument that the delay derivative must be greater than 1 can be justified by consid-
ering input delay systems and is not of interest in the case of state-delayed system. However
this will be explained for completeness. To see this, consider the problem of Figure 3.1 where
an transmitter sends data to a receiver continuously (the data is a continuous flow). The data
are driven through a medium of length ` with with a finite variable speed v(t) depending on
the time instant of emission (as in a network where the speed of propagation depends on the
occupation of the servers). Hence, the time of transmission is given by h(t) = `v(t). When
a data is transmitted at times t and t + δt then they will be received at times t + h(t) and
t+ δt+ h(t+ δt) respectively.
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-

-

t t+ h(t)
delay h(t)

delay h(t+ δt)
t+ δt t+ δt+ h(t+ δt)

Transmitter Receiver
?

time

Figure 3.1: Illustration of continuous data transmission between two entities

The causality of the signals claim that if a data value is emitted at time t, it will reach
the receiver before the data emitted at time t+ δt for every δt > 0. This is translated in the
formal expression

t+ h(t) < t+ δt+ h(t+ δt) (3.5)

then we have
− δt < h(t+ δt)− h(t) (3.6)

and thus
− 1 <

h(t+ δt)− h(t)
δt

(3.7)

Since the inequality is true for every δt > 0 then we get

− 1 < ḣ(t) (3.8)

This condition ensures that once emitted the data will be received in a correct order.
Note that it may not be the case when considering the control of system over a network using
packet switching. In this case, since the data may not follow the same path, then it is not
guaranteed that the data will be received in a correct order (this is the reason why the TCP
protocol implements a packet counter allowing to reorganize the packets once received).

The second idea, which is important for state-delayed systems, is to look at the evolution
of the function f(t) = t − h(t) compared to t. It is clear that f(t) ≤ t which means that
h(t) ≥ 0 but it is also interesting to have f(t) increasing. Indeed, having f(t) increasing means
that there exists an inverse function f−1(·) and in some applications and computations this
property is important. If for some time values t, f(t) is locally decreasing, then this means
that there exist t1 < t2 such that t2 − h(t2) = t1 − h(t1). This would mean that the same
data is considered at different times which may be incorrect.

Let t2 = t1 + δt with δt > 0 and thus we have t1 + δt − h(t1 + δt) = t1 − h(t1) which is
equivalent to

δt− h(t1 + δt) = −h(t1)

and finally

1 =
h(t1 + δt)− h(t1)

δt
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If δt tends to 0, we get
1 = ḣ(t)

This shows that if the delay derivative reaches 1 for some time-instants, then the same data
will be used at different times. If this has to be avoided, by continuity, it suffices to restrict
ḣ to satisfy the inequality

ḣ(t) < 1 (3.9)

Such a function t− h(t) satisfying this property is depicted on Figure 3.2.

6

-t

t

t− h(t)

�
-

Figure 3.2: Illustration of the nondecreasingness of the function t− h(t)

In some specific applications, for instance control of systems with varying sampling-rate
(sampled-data systems) [Fridman et al., 2004, Suplin et al., 2007] time delay systems having
a derivative equals to 1 almost everywhere are used. Indeed, systems with zero-order hold on
the input is turned into a time-delay system with time-varying delay on the input where the
time-varying delay describes the zero-order hold with variable period. Since a zero-order hold
maintains a specific value during a certain amount of time (the period) it seems obvious that
h(t) = 1 all over the period (in this case all works as if the time was frozen over the period).

3.1.2 Parameter Spaces

This section is devoted to describing the considered sets of parameters. Only common sets
will be briefly introduced and more details are given in Section 1.1. Along this thesis we
will mainly focus on continuous parameters (smooth and nonsmooth). In some applications,
delayed parameters are encountered and basic properties (continuity and differentiability) of
such parameters will be discussed hereafter. First of all, let us introduce the following sets:

Uρ := ×Np

i=1[ρ−i , ρ
+
i ] compact of RNp (3.10)

where Np > 0 is the number of parameters.

Uν := ×Np

i=1{ν−i , ν+
i } (3.11)

The set Uρ is the set of values taken by the parameters and is a bounded orthotope of RNp .
On the second hand, the set Uν is a discrete set of RNp containing 2Np values. It contains
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the set of vertices of the orthotope where the parameter derivative values evolve. Hence this
orthotope is defined as the convex hull of the points contained in Uν and is denoted hull[Uν ].

Sometimes the delay may act on some parameters if the system involve such parameters
or due to the use of a particular Lyapunov-Krasovskii functional as in [Zhang et al., 2002].
Thus it seems necessary to introduce this important case. Obviously, the set of values taken
by delayed parameters is included into the set of non-delayed parameters. In an absolute
point of view they coincide but it will be shown hereunder that it is not so simple and the
delay will play an important role. The set of values that can take ρh(t) = ρ(t− h(t)) for each
value of ρ(t) is analyzed below.

Let us consider the case Np = 1 and define the delayed parameter as ρ(t−h(t)). Moreover,
without loss of generality let ν := ν+ = −ν− and ρ̄ = ρ+ = −ρ−. Hence, as the parameter
has a bounded derivative, then it satisfies the so-called Lipschitz condition

|ρ(t2)− ρ(t1)| ≤ ν|t2 − t1| (3.12)

for any t1 6= t2, t1, t2 ∈ R+. Hence assuming that t2 > t1 then we have

− ν(t2 − t1) ≤ ρ(t2)− ρ(t1) ≤ ν(t2 − t1) (3.13)

Let t2 = t and t1 = t− h(t) then we obtain

− νh(t) ≤ ρ(t)− ρ(t− h(t)) ≤ νh(t) (3.14)

and hence we obtain
ρ(t)− νh(t) ≤ ρ(t− h) ≤ ρ(t) + νh(t) (3.15)

Since in most cases the current value of the delay h(t) ∈ [hmin, hmax] is generally unknown
then it is more convenient to consider

ρ(t)− νhmax ≤ ρ(t− h) ≤ ρ(t) + νhmax (3.16)

This shows that the set of values taken by the delayed parameters depend on the rate of
variation of the parameters ν and the maximal delay value hmax. Hence for sufficiently small
ν and hmax then the set of values of the delayed parameters is not absolutely identical to Uν
but can be reduced to a neighborhood of the value of ρ(t) at time t. This neighborhood, in
the one dimensional case, is an interval centered around ρ(t) with radius νh.

The interest of the following results is to determine whether or not the domain of delayed
parameters coincides with the parameters.

Proposition 3.1.1 If νhmax ≥ 2ρ̄ then the set of value of ρ(t − h) coincides with Uρ for
every t ≥ 0.

A direct analysis shows that if the parameters are discontinuous (i.e. unbounded deriva-
tives) and/or the delay is unbounded (i.e. hmax = +∞), then the set of delayed-parameters
coincide with the set of non-delayed parameters.

Proposition 3.1.2 If νhmax < 2ρ̄ then the set of value of ρ(t−h) is included in Uρ for every
t ≥ 0 and is depicted in Figure 3.3.
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Figure 3.3: Set of the values of ρ(t− h) (in grey) with respect to the set of value of ρ(t) (the
horizontal interval [−ρ̄, ρ̄]

The set of generalized parameters (ρ, ρh) where ρh is the delayed parameter is a polyhedral
with 6 vertices and 6 edges. Moreover the set of values of the delayed parameter ρh can be
parametrized by ρ:

Uρh
(x) := {y ∈ R : |y − x| ≤ νh} (3.17)

Hence the set of all values for ρh is given by

Ūρh
:= {y ∈ R : |y − x| ≤ νh, x ∈ Uρ} (3.18)

and the whole set Ūρ of values of (ρ, ρh) is defined by

Ūρ := {(ρ1, ρ2) : ρ1 ∈ Uρ, ρ2 ∈ Uρh
(ρ1)} (3.19)

Let us consider now the derivative of the delayed parameters for the particular case of
continuous parameters. In the case of constant delay, the set of delayed parameter derivative
values coincides with the set [−ν, ν] = hull[{−ν, ν}] since the delay is constant, i.e.

d

dt
ρ(t− h) = ρ′(t− h) ∈ [−ν, ν]

However, in the case of varying delay two cases may appear according to the type of the
rate of variation (bounded or unbounded) of the delay. Assume first that the rate is bounded
and then we have

d

dt
ρ(t− h(t)) = (1− ḣ(t))ρ′(t− h(t)) (3.20)
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and hence we have
− (1 + µ)ν ≤ d

dt
ρ(t− h(t)) ≤ (1 + µ)ν (3.21)

This shows that the set of values of the rate of variation of delayed parameters is larger
than for the nondelayed ones. Finally, if the delay derivative is unbounded then the rate of
variation of delayed parameters is unbounded too.

Different properties of delayed parameters have been determined and overall their set of
values. We can now give a general formulation of the class of systems that will be considered
in this thesis.

3.1.3 Class of LPV Time-Delay Systems

Throughout this thesis, the following class of LPV time-delay systems [Wu, 2001, Zhang and
Grigoriadis, 2005] will be considered if not stated otherwise:

ẋ(t) = A(ρ, ρh)x(t) +Ah(ρ, ρh)x(t− h(t)) + E(ρ, ρh)w(t)
z(t) = C(ρ, ρh)x(t) + Ch(ρ, ρh)x(t− h(t)) + F (ρ, ρh)w(t)
x(θ) = φ(θ), θ ∈ [−hmax, 0]

(3.22)

where x ∈ Rn, w ∈ Rm, z ∈ Rp are respectively the system state, the exogenous input
and the controlled output. Such a class captures a wide class of LPV time-delay systems.
Moreover, the delay is assumed to belong to H ◦

1 with hmin = 0 and the parameters (ρ, ρh) ∈
Ūρ, (ρ̇, dρh/dt) ∈ Uν × (1 + µ)Uν where the sets are extended to Np > 1. From these
considerations it is clear that such systems merge all the particularities of LPV systems
introduced in Chapters 1 and 2.

Such systems may occur in many nonlinear physical systems with delay approximated by
LPV systems. For instance, in [Zhang et al., 2002] a milling process is modeled as a LPV
time-delay systems as shown below:

Figure 3.4: Simplified geometry of a milling process
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The corresponding model is given by the expressions

m1ẍ1 + k1(x1 − x2) = f
m2ẍ2 + cẋ2 + k2(x2 − x1) + k2x2 = 0
f = k sin(φ+ β)z(t)
z(t) = za + sin(φ)[x1(t− h)− x1(t)]

where k1 and k2 are the stiffness coefficients of the two springs, c is the damping coefficient,
m1 is the mass of the cutter, m2 is the mass of the ’spindle’. The displacements of the blade
and tool are x1 and x2 respectively. The angle β depends on the particular material and tool
used, and is constant. The angle φ denotes the angular position of the blade and k is the
cutting stiffness. za is the average chip thickness (here assumed, without loss of generality,
za = 0) and h = π/ω is the delay between successive passes of the blades. This system can
be modeled as a LPV system with delay of the form

ẋ(t) = (A+Akk +Aγγ +Akγkγ)x(t) + (Ah +Ahkk +Ahγγ +Ahkγkγ)x(t− h) (3.23)

where the parameters are the stiffness k = k1 = k2 and γ = cos(2φ + β) ∈ [−1, 1]. An
interesting discussion about this process is provided in [Zhang et al., 2002].

3.2 Relaxation of Polynomially Parameter Dependent
Matrix Inequalities

In this section, a new method of relaxation of polynomially parameter dependent LMIs is
proposed in the following. It will be used to tackle parameter dependent LMIs (also called
’robust LMIs’) that arise for instance in the (robust) stability analysis of uncertain and LPV
systems.

Since several years, many results on relaxation of polynomially parameter dependent LMIs
have been provided. Even if many of them were applied to polynomial of degree 2, arising for
instance in gain-scheduled state-feedback controller for polytopic systems having a parameter
dependent input matrix, most of them could be applied to polynomial of higher degree. For
instance let us mention the following works on this topic [Apkarian and Tuan, 1998, Geromel
and Colaneri, 2006, Oliveira et al., 2007, Oliveira and Peres, 2006, 2002, Scherer, 2008, Tuan
and Apkarian, 1998, 2002].

The approach provided in this section is close to the Sum-of-Squares relaxation in the
sense that the matrix of polynomials is represented in a spectral form (See Section 1.3.3.3).
But at the difference of the classical SOS approach, this method does not involve any choice
or decision of the designer (such as the degree of polynomials) except the choice of the basis
in which the polynomial is expressed (by basis we mean the outer factor of the spectral form).
We will also see that this method linearizes the dependence on the parameters, and thus turns
a polynomially parameter dependent LMI into a linearly parameter dependent LMI with a
slight conservatism. Finally the resulting conditions are directly written in terms of a linearly
parameter dependent LMI involving a slack variable, which benefits of the simplicity of the
affine dependence on the parameters. As an extension of the procedure, it will be possible
to provide some ideas about a judicious choice of the basis which reduces (minimizes) the
number of involved monomials.
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Let us consider the parameter dependent LMI M(X, ρ) which writes as

M(X, ρ) :=M0(X) +
N∑

i=1

Mi(X)ui(ρ) (3.24)

whereMi(X) ∈ Sn, X denotes the decision variables and ui(ρ) are monomials in ρ = coli(ρi) ∈
Uρ.

The following result describes the transformation of the polynomially parameter dependent
LMI into a linearly parameter dependent LMI:

Theorem 3.2.1 Let us consider a polynomially parameter dependent matrix inequality of the
form (3.24). It can be written into a spectral form

Θ⊥(ρ)TM(X)Θ⊥(ρ) ≺ 0 (3.25)

where M is a parameter independent symmetric matrix constructed from M0(X), Mi(X)
and Θ⊥(θ) a rectangular matrix gathering monomials appearing in the parameter dependent
LMIs (e.g. Θ⊥(ρ) = col(1, u1(ρ), . . . , un(ρ))). Then (3.25) is feasible in X for all ρ ∈ Uρ if
there exists X and a matrix P of appropriate dimensions such that

M(X) + PTΘ(ρ) + Θ(ρ)TP ≺ 0 (3.26)

holds for all ρ ∈ Uρ and Θ(ρ)Θ⊥(ρ) = 0. Moreover, with an appropriate choice of Θ⊥(ρ) then
Θ(ρ) =

∑N
i=1 Θiρi is affine in θi.

Proof : The proof is a simple application of the Finsler’s lemma to parameter dependent
LMIs. Consider first, the parametrized LMI in its spectral form (3.25) and then invoking the
Finsler’s lemma (see Appendix E.16), we can claim that this is equivalent to the existence of
P(ρ) such that

M(X) + P(ρ)TΘ(ρ) + Θ(ρ)TP(ρ) ≺ 0 (3.27)

holds.
However, since the aim of the procedure is the linearization of the parameter dependence

then by restricting P to be parameter independent we get

M(X) + P(ρ)TΘ(ρ) + Θ(ρ)TP(ρ) ≺ 0⇒ Θ⊥(ρ)TM(X)Θ⊥(ρ) ≺ 0 (3.28)

It is aimed now that, for every polynomial, it is possible to construct Θ⊥(ρ) for which Θ(ρ)
is affine in ρ. To show this, note that the trivial basis for univariate polynomials Θ⊥(ρ) =
col(1, ρ, ρ2, . . . , ρn) admits

Θ(ρ) =




−ρ 1 0 0 0 . . . 0
0 −ρ 1 0 0 . . . 0
0 0 −ρ 1 0 . . . 0
0 0 0 −ρ 1 . . . 0
...

. . . . . .
0 0 0 0 0 −ρ 1




(3.29)

Hence since the trivial basis is the kernel of an affine parameter dependent matrix then it is
possible to find an affine Θ(ρ) for every univariate polynomial. This generalizes directly to
the multivariate case. �
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It is worth noting that using the trivial functions ui(ρ) = ρi in Θ⊥(ρ) (for the univariate
case) may be not the best choice. Indeed, the most intuitive choice is to choose Θ⊥(ρ) =
col(1, ρ1, . . . , ρN , ρ

2
1, . . .) which will give an affine Θ(ρ) but with increased complexity since

the dimension of M is larger than in the case of taking the ui(ρ)’s. Hence, it is important
to point out the properties of a nontrivial basis Θ⊥(ρ) (reduced dimension) for which Θ(ρ) is
affine. Actually, if the polynomials (may not be exclusively monomials) vi(ρ) components of
Θ⊥(ρ) are chosen to satisfy

vi(ρ) =
n∑

j

pij(ρ)vj(ρ) (3.30)

where the pij(ρ)’s are affine polynomials in ρ and N is the size of the basis, then there exists
an affine Θ(ρ).

The latter equality can be rewritten into the compact form

v(ρ) = P (ρ)v(ρ) (3.31)

where v(ρ) = coli(vi(ρ)) and P (ρ) =



p11(ρ) . . . p1N (ρ)

...
. . .

...
pN1(ρ) . . . pNN (ρ)


 or equivalently

(I − P (ρ))v(ρ) = 0 (3.32)

It is worth mentioning that the computational complexity of the procedure depends on
the number N of functions ui(ρ). Hence the problem results, for a given M(X, ρ), in finding
the minimal N such that

det(I − P (ρ)) = 0
M(X, ρ) :=

∑N
i=1Mi(X)vi(ρ)

(3.33)

for someMi(X) and for all ρ ∈ Uρ with P (ρ) affine in ρ. Indeed, if this condition is satisfied
this means that there exists a Θ⊥(ρ) which is a basis of the null space of an affine matrix
Θ(ρ). This optimization problem is non trivial since it involves polynomials and a dimension
of a basis is the cost to minimize. This gives rise to interesting optimization problem that
will not be treated here but belongs to further works and investigations.

Coming back to theorem (3.2.1), it is possible to derive an important result for LMI
involving quadratic polynomial dependence, useful in polytopic systems.

Corollary 3.2.2 The following parameter dependent matrix inequality is feasible

M(λ) =M0 +
N∑

i=1

λiMi +
N∑

i,j=1

λiλjMij ≺ 0 (3.34)

provided that
∑N

i=1 λi = 1, λi ≥ 0 if there exists Z such that

K̃ + ZTΠ(λ) + Π(λ)TZ < 0 (3.35)

is feasible for all λ ∈ UN−1
λ where

Π(λ) =




−λ1I I 0 . . . 0
−λ2I 0 I . . . 0

...
...

. . . 0
−λN−1I 0 0 . . . I



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K̃ =




K0 K1/2 . . . KN−1/2
? K11 . . . K1(N−1)/2
...

...
. . .

...
? ? . . . K(N−1)(N−1)




with K0 =M0 +MN +MNN , Ki =Mi−MN +2ΣiN −2MNN , Kij =Mij−2ΣNi+MNN ,
Ωij = (Kij +Kji)/2 and Σij = (Mij +Mji)/2.

Proof : First note that the set of parameters λi, i = 1, . . . , N can be reduced to a set of
N − 1 parameters by using the constraint 1−∑N

i=1 λi = 0 and hence we have

λN = 1−
N−1∑

i=1

λi

Hence (3.34) can be rewritten as

(3.34) = M0 +
N−1∑

i=1

Mi + (1−
N−1∑

i=1

λi)MN +
N−1∑

i,j=1

MijλiλjMij

+
N−1∑

i=1

λi

(
1−

N−1∑

i=1

λi

)
(MiN +MNi)

+

(
1−

N−1∑

i=1

λi

)(
1−

N−1∑

i=1

λi

)
MNN

Gathering the affine and quadratic together terms we get

K0 +
∑N−1

i=1 λiKi +
∑N−1

i,j=1 λiλjKij (3.36)

where K0 =M0 +MN +MNN , Ki =Mi−MN +2ΣiN−2MNN , Kij =Mij−2ΣNi+MNN

and Σij =
1
2

(Mij +Mji).

The rest of the proof is an application of theorem 3.2.1. First, choose Π⊥(λ) = col(I, λ1I, . . . , λN−1I)
and

K̃ =




K0 K1 . . . KN−1

? M11 . . . Ω1(N−1)
...

...
...

...
? ? . . . M(N−1)(N−1)


 (3.37)

such that
Π⊥M̃ΠT

⊥ < 0

with Ωij = (Kij +Kji)/2.
Now compute Π such that ΠΠ⊥ = 0 and we get

Π =




−λ1I I 0 . . . 0
−λ2I 0 I . . . 0

...
...

. . .
...

−λN−1I 0 0 . . . I


 (3.38)
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Finally applying theorem 3.2.1 we get

K̃ + ZTΠ(λ) + Π(λ)TZ < 0

which is exactly the result of corollary 3.2.2. �
The following example shows the interest of the approach:

Example 3.2.3 Let us consider the univariate polynomial

p(x) = −x4 + 4x3 + 43x2 − 58x− 240 (3.39)

whose graph is depicted on Figure 3.5

Figure 3.5: Graph of the polynomial p(x) over x ∈ [−6, 9]

The goal is to find the supremum of p(x) over the interval [−6, 9], hence we are looking
for the minimal value of γ such that

p(x) ≤ γ ∀ x ∈ [−6, 9]

which is equivalent to the following optimization problem

min γ s.t.
p(x)− γ ≤ 0
x ∈ [−6, 9]

First of all, p(x) − γ is rewritten in the spectral form (the repartition of the terms along
anti-diagonals is arbitrary):

p(x) =




1
x
x2



T 

−γ − 240 −29 20

? 3 2
? ? −1






1
x
x2


 ≤ 0 (3.40)
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Applying Theorem 3.2.1, we get the following LMI


−γ − 240 −29 20

? 3 2
? ? −1


+NTΘ(x) + Θ(x)TN � 0 (3.41)

where N is a free matrix variable belonging to R2×3 and Θ(x) is defined such that Θ(x)




1
x
x2


 =

0. Then we have

Θ(x) =
[
x −1 0
0 x −1

]

Finally this leads to the parameter dependent LMI with linear dependence in x:

P(γ, x) =



−γ − 240 −29 20

? 3 2
? ? −1


+NT

[
x −1 0
0 x −1

]
+
[
x −1 0
0 x −1

]T
N � 0

Hence with a polytopic argument, the optimization problem becomes

min γ s.t.
P(γ,−6) � 0
P(γ, 9) � 0

Solving this SDP we get γopt = 529.6340928975 found with

N =
[
−10.0347 5.4752 0.2318
−3.6163 −0.0356 −0.03792

]

The theoretical result is given by s := supx∈[−6,9] p(x) = 529.63265619463 and the computation
error is

ε := γ − s = 0.001436702914

We can see that the computed maximum is very close to the theoretical one. This shows that
this relaxation leads to results with low conservatism.

3.3 Relaxation of Concave Nonlinearity

Concave nonlinearities are the most difficult nonlinearities to handle in the LMI framework.
They may appear in many problems especially when congruence transformations are per-
formed and occur for instance in the problems studied in [Briat et al., 2008d, Chen and
Zheng, 2006] and maybe many others. First of all, known solutions will be presented and
explained and finally the new ’exact’ relaxation will be provided.

Indeed, it is well known that, even if the following problem in ε, α and β is nonlinear

ε+ αTβ−1α ≺ 0, ε = εT ≺ 0, β = βT � 0 (3.42)

the problem is convex since the nonlinearity αTβ−1α is convex. A Schur complement on this
matrix inequality yields the matrix

[
ε αT

α −β

]
≺ 0 (3.43)
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which is affine (and then convex) in the decision variable. But the question is what happens
when the sign ’+’ is turned into a sign ’-’ ? The convex nonlinearity becomes concave and the
Schur complement does not apply anymore. The following section aims at providing solutions
on the relaxation of such nonlinearity.

Let us consider now the following nonlinear matrix inequality

ε− αTβ−1α ≺ 0, ε = εT , β = βT � 0 (3.44)

Note that the negative definiteness of ε is not assumed anymore in this case, hence the
nonlinear term is needed for negative definiteness of the sum. Indeed, if ε ≺ 0 there exists
a trivial (conservative) bound on the nonlinear term which is 0 (since the nonlinear term is
positive semidefinite). Moreover, the matrix α are not necessarily square and these facts show
the wide generality of the proposed approach.

The following result has been often used in the literature to bound the nonlinear term.

Lemma 3.3.1 The following relation holds

− αTβ−1α � −α− αT + β (3.45)

Proof : Since β � 0, then define the inequality

(I − β−1α)Tβ(I − β−1α) � 0

and thus we have

β − αT − α+ αTβ−1α � 0
⇒ −αTβ−1α � β − αT − α

This concludes the proof. �
A direct extension of the latter results yields

Lemma 3.3.2 The following relation holds for some ω > 0

− αTβ−1α � −ω(α+ αT ) + ω2β (3.46)

Using this lemma, the nonlinearity is bounded by an hyperplane as seen on figure 3.6
where the scalar case is considered with ω = 1.
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Figure 3.6: Evolution of the concave nonlinearity and the linear bound in the scalar case with
fixed α = p = 1, β = q and ω = 1

Actually these results are a linearization of the nonlinearities around some particular
point. Hence, such a bound will be conservative when the computed matrices are far from
the linearization point. In the second result, ω has the role of a tuning parameter which
’moves’ the linearization point in order to decrease the conservatism of the bound.

In [Chen and Zheng, 2006] it has been proposed to use the Cone Complementary Algorithm
[Ghaoui et al., 1997] as a relaxation result. Initially, this algorithm was developed to deal with
static output feedback design or more generally to ’LMI’ problems involving simultaneously
matrices and their inverse. At the light of [Chen and Zheng, 2006], it turns out that it can
also be applied efficiently to relax concave nonlinearity of the form −αTβ−1α.

To adapt this algorithm to a relaxation scheme, let υ ≤ αT β̄α and we have ῡ ≥ ᾱβᾱT

where ᾱα = I, β̄β = I and ῡυ = I. Then we get the following problem of finding X =
(ε, α, β, υ, ᾱ, β̄, ῡ) such that

ε− υ ≺ 0[
ῡ ᾱT

ᾱ β̄

]
� 0

ᾱα = I
β̄β = I
ῡυ = I

(3.47)

which is a nonconvex problem due to nonlinear equalities. It is clear that the latter problem
is identical to the initial one. Finally, using the Cone Complementary Algorithm it is possible
to approximate the problem (3.44) by the following iterative procedure:

Algorithm 3.3.3 Adapted Cone Complementary Algorithm:
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1. Initialize i = 0, ε = 1 and X0 := (ε0, α0, β0, υ0, ᾱ0, β̄0, ῡ0) solution of

ε− υ ≺ 0
[
ῡ ᾱT

ᾱ β̄

]
� 0 (3.48)

2. Find Xi+1 solution of

γi+1 := minX trace(υiῡ + ῡiυ + αiᾱ+ ᾱiα+ βiβ̄ + β̄iβ)

such that

ε− υ ≺ 0
[
ῡ ᾱT

ᾱ β̄

]
� 0 (3.49)

3. if γi+1 = 6n then STOP: Solution Found
else if ε > εmax then STOP: Infeasible problem
else i = i+ 1, goto Step 2.

Although this algorithm does not converge systematically to a global optimum of the
optimization problem, it gives quite good results in practice. However, this efficient approach
suffers from two drawbacks:

1. It can be applied with square matrices only since the procedure needs the inversion of
the matrix α.

2. It can only deal with constant matrices since they are needed to be inverted and the
inverse of parameter dependent matrices cannot be expressed in a linear fashion with
respect to the unknown matrices. As an examples, the inverse of the matrix P (ρ) =
P0 + ρP1 is defined by

P (ρ)−1 = P−1
0 − P−1

0 (P−1
0 − P−1

1 ρ−1)−1P−1
0

and cannot be expressed linearly for instance P (ρ)−1 = S0 + S1u(ρ) where u(ρ) is a
particular function.

The parameter dependent matrix case should be treated with the lemma 3.3.1 and 3.3.2
with a possibly parameter varying ω(ρ). However, due to the high conservatism of this bound,
we have been brought to develop the following result to overcome these problems. Such a
result has been published in [Briat et al., 2008d] and allows for a ’good’ relaxation of the
nonlinearity by bilinearities.

Theorem 3.3.4 Consider a symmetric positive definite matrix function β(·), a matrix (non
necessarily square) function α(·) and a symmetric matrix function ε(·) then the following
propositions are equivalent:

a) ε(·)− αT (·)β−1(·)α(·) ≺ 0

b) There exists a matrix function of appropriate dimensions η(·) such that
[
ε(·) + α(·)T η(·) + η(·)Tα(·) ?

β(·)η(·) −β(·)

]
≺ 0 (3.50)
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Proof : b)⇒ a)
First we suppose that there exists η(·) such that (3.50) holds. Hence using Schur comple-

ment there exists a η(·) such that

ε(·) + [ηT (·)α(·)]H + ηT (·)β(·)η(·) ≺ 0

Using the completion by the squares, this is equivalent to

ε(·) + ζT (·)β−1(·)ζ(·)− αT (·)β−1(·)α(·) ≺ 0

with ζ(·) = α(·) + β(·)η(·). Finally we obtain

ε(·)− αT (·)β−1(·)α(·) ≺ −ζT (·)β−1(·)ζ(·) (3.51)

Since β(·) > 0 then the right-hand side of equation (3.51) is negative semidefinite for all
η(·). Then we can conclude that if there exist a η(·) such that (3.51) is satisfied then a) is
true. Moreover when ζ(·) vanishes identically then no conservatism is induced and the bound
equals the nonlinear term. That means that when η(·) = −β−1(·)α(·) the relaxation is exact.

a)⇒b)
First consider the matrix

Θ(·) =
[
ε(·) α(·)T
α(·) β(·)

]
(3.52)

with β(·) � 0 and ε(·) − α(·)Tβ(·)−1α(·) ≺ 0. Let dim(ε(·)) = n and dim(β(·)) = l and note
that Θ(·) may be rewritten as

Θ(·) =
[
δ(·)1/2 α(·)Tβ(·)−1/2

0 β(·)1/2

] [
−In 0

0 Il

] [
δ(·)1/2 0

β(·)−1/2α(·) β(·)1/2

]
(3.53)

where δ1/2(·) and β1/2(·) define the symmetric positive definite square root of matrices δ(·)
and β(·) with δ(·) = −ε(·)+α(·)Tβ−1(·)α(·). From this equality it is clear the matrix Θ has n
negative eigenvalues and l positive eigenvalues since Θ(·) is congruent to diag(−In, Il). Then
there exists a subspace with maximal rank of the form

Λ(·) =
[
θ(·)
η(·)

]
with rank Λ(·) = n (3.54)

with θ(·) ∈ Rn×n and η(·) ∈ Rl×n such that Λ(·)TΘ(·)Λ(·) < 0. Expand the latter inequality
leads to (dropping the dependence (·)):

θT εθ + θTαT η + ηTαθ + ηTβη ≺ 0 (3.55)

Rearranging the terms using the fact that β(·) � 0 is symmetric leads to

θT (ε− αTβ−1α)θ + (αθ + βη)Tβ−1(αθ + βη) ≺ 0 (3.56)

Since ε−αTβ−1α ≺ 0 and since β(·) � 0 then it implies that θT (ε−αTβ−1α)θ < 0. Hence
θ is of full rank (nonsingular in the square case). Now let K be the set such that

K := {κ : θT (ε− αTβ−1α)θ + κTβ−1κ ≺ 0} (3.57)
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It is clear that the set K is nonempty since it includes κ = 0. It is not reduced to a singleton
since it exists a neighborhood N centered around κ = 0 for which (3.57) is satisfied for all
κ ∈ N . Now we will show that for all nonsingular θ there exist values for κ (and hence values
for η) for which (3.57) holds.

First note that β > 0 is nonsingular, then the equation

αθ + βη = κ (3.58)

for given θ and κ has the solution η = β−1(κ−αθ). Hence this means that for given ε, β, α, θ
such that ε − αTβ−1α ≺ 0, β � 0, rank(θ) = n, there exist η such that (3.56) is satisfied.
The existence of such a η is thus shown.

Now fix θ = I for simplicity and consider (3.56) we obtain

ε+ αT η + ηTα+ ηTβη ≺ 0 (3.59)

Apply the Schur’s Lemma to obtain
[
ε+ αT η + ηTα ηTβ

βη −β

]
≺ 0 (3.60)

This concludes the proof. �
This theorem has the benefit of allowing to deal with parameter varying matrices and non

square α which is a great improvement compared to previous methods. Moreover, it involves
only feasibility problems and this can be directly extended to an optimization problems. This
is not the case for the cone complementary algorithm which involves already an optimization
problem (i.e. the trace on some matrices is aimed to be minimized). Hence, if minimal
L2-performances are sought then we will be in presence of a multi-objective optimization
problem (the costs are the trace and the norm) which is not trivial. The tradeoff between the
costs should be done with care, in order to not too penalize the trace cost which is the most
important one.

Since (3.50) is bilinear (BMI) then no efficient algorithm is available to solve it in rea-
sonable time. Nevertheless, the BMI structure is more convenient than the initial nonlinear
expression involving the inverse of a decision matrix and this fact suggests that an iterative
procedure should work to find a solution to the problem. Indeed, noting that by fixing the
value of η the problem is convex in ε, α and β and vice-versa, it seems interesting to develop
such an algorithm matching this particular form of BMI. Due to this property an algorithm
in two steps can be used to find a solution iteratively such as the D-K iteration algorithm
used in µ-synthesis [Apkarian et al., 1993, Balas et al., 1998].

Since every iterative procedures needs to find an initial feasible point in order to converge
to a local/global minimum, the remaining problem is to find this initial feasible point. In the
proof of theorem 3.3.4, it is shown that the relaxation is exact if and only if η = −β−1α and
hence finding an initial η0 is equivalent to finding an initial α0 and β0. If all the matrices
are square then lemmas 3.3.1 and 3.3.2 can be used to find an initial feasible point. If α is
rectangular, then a nondeterministic approach can be used to find a good (random) value for
η0.

Finally, if parameter dependent matrices ε(ρ) and α(ρ) are considered, then according to
the exact relation η(ρ) = −β−1α(ρ), the matrix η(ρ) has the same parameter dependence
as α(ρ). For simplicity of initialization, it is possible to define a constant η0 which does not
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depend on the parameters but when the optimization procedure in η is launched a second
time then η should be defined as parameter dependent.

Algorithm 3.3.5 1. Let i = 0, fix ηi(ρ)

2. Solve for (εi(ρ), αi(ρ), βi(ρ)) solutions of
[
ε(ρ) + ηi(ρ)α(ρ) + α(ρ)T ηi(ρ) ηi(ρ)Tβ(ρ)

? −β(ρ)

]
≺ 0 (3.61)

3. Let i = i+ 1, solve for ηi solution of
[
εi−1(ρ) + ηi(ρ)αi−1(ρ) + αi−1(ρ)T ηi(ρ) ηi(ρ)Tβi−1(ρ)

? −βi−1(ρ)

]
≺ 0 (3.62)

If stop criterion is satisfied then STOP else go to Step 2.

It will be shown in Section 5.1.3 that such an algorithm leads to good results in a small
number of iterations (between 1 and 4).

3.4 Polytopic Systems and Bounded-Parameter Variation
Rates

In many of the papers, only parameter dependent polytopic system with arbitrary fast-
varying parameter variation rate (unbounded rate of variation) are considered (see for instance
[Oliveira et al., 2007]). However, some of them consider robust stability instead of quadratic
stability [de Souza and Trofino, 2005]. In this section, a way to consider easily bounded pa-
rameter variation rate in the polytopic domain is introduced. The main difference between
stability conditions expressed for arbitrary fast varying system and bounded rate parameters,
is the presence, or not, of parameter derivatives into these conditions. The main difficulty is
that derivatives of the polytopic variables have a non-straightforward relation with parameter
derivatives. As an example, let us consider the following polytopic LPV system with N = 2s

polytopic variables where s is a positive integer:

ẋ(t) = A(λ)x(t) + E(λ)w(t)
z = C(λ)x(t) + F (λ)w(t)

(3.63)

The robust bounded-real lemma (see Section 1.3.2) is then given by the LMI condition


P (λ)A(λ) +A(λ)TP (λ) + P[λ̇(t)⊗ I] P (λ)E(λ) C(λ)T

? −γI F (λ)T

? ? −γI


 ≺ 0 (3.64)

where P =
[
P1 P2 . . . PN

]
.

Now rewrite the matrix A(λ) as the following:

A(λ) =
N∑

i=1

λi(t)ViAi (3.65)
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where the time-varying parameters are given by ρ(t) =
∑N

i=1 λi(t)Vi where the Vi are the
vertices of the polytope in which ρ(t) evolve and λi(t) the time-varying polytopic coordinates
evolving over the unit simplex Γ:

Γ :=

{
λ(t) ∈ [0, 1]N :

N∑

i=1

λi(t) = 1, t ≥ 0

}
(3.66)

The extremal values of ρ(t) are the Vi, i = 1, . . . , N but, on the other hand, provided that
bounds on the rate of variation are known, then it is possible to define a polytope containing
the parameter derivatives, i.e. ρ̇(t) ∈ hull[D]. Indeed, differentiating the parameters ρ(t) we
get

ρ̇(t) =
N∑

i=1

λ̇i(t)Vi ∈ hull[Di] (3.67)

and from this expression, the relation between the values λ̇i(t) and the Di is unclear. What
are the extremal values for λ̇i(t) ? A way to find them is to define

ρ̇(t) :=
N∑

i=1

λ′i(t)Di (3.68)

where Di, i = 1 : . . . , N are the vertices of the polytope containing all possible values of the
parameter derivatives and λ′i(t) the time-varying polytopic coordinates evolving over the unit
simplex Γ. In this case, we have the following equality

N∑

i=1

λ̇i(t)Vi =
N∑

i=1

λ′i(t)Di (3.69)

which is equivalently written in a compact matrix form

V λ̇(t) = Dλ′(t) (3.70)

with V =
[
V1 V2 . . . VN

]
, D =

[
D1 D2 . . . DN

]
, λ̇(t) = col(λ̇i(t)) and Λ′ =

col(λ′i(t)). Note that we have the following equality constraints
∑N

i=1 λ
′
i(t) = 1∑N

i=1 λ̇i(t) = 0
(3.71)

Combined to (3.70), we get
[

V

1 1 . . . 1

]
λ̇(t) =

[
D

1 1 . . . 1

]
λ′(t)−

[
0
1

]
(3.72)

which is rewritten compactly as

V̄ λ̇(t) = D̄λ′(t)− C (3.73)

with V̄ =
[

V

1 1 . . . 1

]
, D̄ =

[
D

1 1 . . . 1

]
and C =

[
0
1

]
. Such an equation

has solutions in λ̇(t) if and only if one of the following statements holds (see Appendix A.8
or Skelton et al. [1997]):
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1. (I − V̄ V̄ +)(D̄λ′(t)− C) = 0

2. D̄λ′(t)− C = V̄ V̄ +(D̄λ′(t)− C)

In this case the set of solutions is given by

λ̇(t) = V̄ +(D̄λ′(t)− C) + (I − V̄ +V̄ )Z (3.74)

where Z is an arbitrary matrix with appropriate dimensions. It is clear that V ∈ Rlog2(N)×N

and then rank[V ] = dim(ρ) = log2(N). Finally, due to the structure of V , we have rank[V̄ ] =
log2(N)+1, hence V̄ is a full row rank matrix and admits a right pseudoinverse V̄ + such that
V̄ V̄ + = I. This shows that the first statement above holds for every D̄Λ′(t) − C and hence
all the solutions of the problem write:

λ̇(t) = V̄ +(D̄λ′(t)− C) + (I − V̄ +V̄ )Z (3.75)

for a free matrix Z of appropriate dimensions. It is worth noting that the solution is affine in
λ′(t) (which seems logical since the equation is linear) and that Z can be removed from the
solution since only a solution is needed. Z can be tuned in order to modulate the values of
the vector −V̄ +C but it is not of great interest and then the term Z can be set to 0.

It is worth noting that terms λ̇i(t) do not belong to the unitary simplex anymore and may
take negative values since the constraint

∑N
i=1 λ̇i(t) = 0 must be satisfied at every time t ≥ 0.

Finally, substituting λ̇(t) = Mλ′(t) + N with M = V̄ +(D̄ and N = −V̄ +D̄C into the LMI
(3.64) we get a new condition in terms of the λi and λ′i:



P (λ)A(λ) +A(λ)TP (λ) + P[(Mλ′(t) +N)⊗ I] P (λ)E(λ) C(λ)T

? −γI F (λ)T

? ? −γI


 ≺ 0

The following example shows the effectiveness of the approach.

Example 3.4.1 Consider a two parameter problem with (ρ1, ρ2) ∈ [−1, 1] × [−2, 3] and
(ρ̇1, ρ̇2) ∈ [−2, 3]× [−5, 6]. We have the following matrices

V =
[
−1 −1 1 1
−2 3 −2 3

]
D =

[
−2 −2 3 3
−5 6 −5 6

]
(3.76)

Thus we can choose

V̄ + =
1
10




−2.5 −1 3
−2.5 1 2
2.5 −1 3
2.5 1 2


 and then V̄ +D̄ =




1.3 0.2 0.05 −1.05
0.2 1.3 −1.05 0.05
0.3 −0.8 1.55 0.45
−0.8 0.3 0.45 1.55


 V̄ +C =




0.3
0.2
0.3
0.2




Finally using (3.74) we get

λ̇(t) =




1.3 0.2 0.05 −1.05
0.2 1.3 −1.05 0.05
0.3 −0.8 1.55 0.45
−0.8 0.3 0.45 1.55


λ
′(t)−




0.3
0.2
0.3
0.2


 (3.77)

This ends the section on computing the bounds on polytopic parameter derivatives in
terms of another polytopic variables.
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3.5 H∞ Performances Test via Simple Lyapunov-Krasovskii
functional and Related Relaxations

In this section, simple Lyapunov-Krasovskii functionals are considered as in [Gouaisbaut and
Peaucelle, 2006b, Han, 2005a]. Fundamental results are recalled and generalized in the LPV
case and in the framework of time-varying delays. The type of Lyapunov-Krasovskii func-
tionals proposed in these papers allows to avoid any model transformations or any bounding
of cross terms. The only conservatism of the method comes from the initial choice of the
Lyapunov-Krasovskii functionals (which is not complete) and the use of the Jensen’s inequal-
ity (see [Gu et al., 2003] or Appendix F.1) used to bound an integral term in the derivative
of the Lyapunov-Krasovskii functional. The main advantage of these functionals is based
on their simplicity and the small number of Lyapunov-Krasovskii variables involved, thus
minimizing products between data matrices and decision variables, making them potentially
interesting criteria for stabilization problem.

As we shall see later, in the case of a simple Lyapunov-Krasovskii functional, two matrix
couplings occur and thus a relaxation scheme must be performed in order to get tractable
LMI condition for the stabilization problem. In the framework of a discretized Lyapunov-
Krasovskii functional, many couplings would appear corresponding to the order of discretiza-
tion that has been considered.

We will consider in this section the following LPV time-delay system:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) + F (ρ)w(t)

(3.78)

where x ∈ Rn, w ∈ Rp, z ∈ Rq are respectively the system state, the exogenous inputs and
the controlled outputs. The delay h(t) is assumed to be long to the set H ◦

1 , the parameters
ρ satisfy ρ ∈ Uρ and ρ̇ ∈ hull[Uν ].

3.5.1 Simple Lyapunov-Krasovskii functional

The main result of this subsection is based on the use of the following Lyapunov-Krasovskii
functional [Gouaisbaut and Peaucelle, 2006b, Han, 2005a]:

V (t) = V1(t) + V2(t) + V3(t)
V1(t) = x(t)TP (ρ)x(t)T

V2(t) =
∫ t

t−h(t)
x(θ)TQx(θ)dθ

V3(t) =
∫ 0

−hmax

∫ t

t+θ
ẋ(η)ThmaxRẋ(η)dηdθ

(3.79)

from which the following results is derived:

Lemma 3.5.1 System (3.78) is asymptotically stable for all h ∈ H ◦
1 and satisfies ||z||L2 ≤

γ||w||L2 if there exist a continuously differentiable matrix function P : Uρ → Sn++, Q,R ∈ Sn++

and γ > 0 such that the LMI



Ψ11(ρ, ν) P (ρ)Ah(ρ) +R P (ρ)E(ρ) C(ρ)T hmaxA(ρ)TR
? −(1− µ)Q−R 0 Ch(ρ)T hmaxAh(ρ)TR
? ? −γIm F (ρ)T hmaxE(ρ)TR
? ? ? −γIp 0
? ? ? ? −R



≺ 0 (3.80)
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with
Ψ11(ρ, ν = A(ρ)TP (ρ) + PA(ρ) + ∂ρP (ρ)ν +Q−R (3.81)

holds for all (ρ, ν) ∈ Uρ × Uν .

Proof : Computing the time-derivative of (3.79) along the trajectories solutions of system
(3.22) leads to

V̇1(t) = ẋ(t)TP (ρ)x(t) + x(t)P (ρ)ẋ(t) + x(t)T∂ρP (ρ)ρ̇x(t)
V̇2(t) = x(t)TQx(t)− (1− ḣ)x(t− h(t))TQx(t− h(t))

V̇3(t) = h2
maxẋ(t)TRẋ(t)−

∫ t

t−hmax

ẋ(θ)ThmaxRẋ(θ)dθ
(3.82)

Note that as |ḣ| < 1 then we have −(1 − ḣ) ≤ −(1 − µ). Note also that as h(t) ≤ hmax
then

−
∫ T

t−hmax

ẋ(θ)ThmaxRẋ(θ)dθ ≤ −
∫ t

t−h(t)
ẋ(θ)ThmaxRẋ(θ)dθ

.
Finally using the Jensen’s inequality (see Appendix F.1) it is possible to bound the integral

term in V̇3(t) as follows:

V̇3(t) ≤ h2
maxẋ(t)TRẋ(t)−

∫ T

t−h(t)
ẋ(θ)thmaxRẋ(θ)dθ

≤ h2
maxẋ(t)TRẋ(t)− hmax

h(t)

(∫ t

t−h(t)
ẋ(θ)dθ

)T
R

(∫ t

t−h(t)
ẋ(θ)dθ

)

= h2
maxẋ(t)TRẋ(t)− hmax

h(t)
(x(t)− x(t− h(t)))T R (x(t)− x(t− h(t)))

(3.83)

It should be proved now that the previous expression is well-posed in h(t) when h(t) is
zero. First denote ti to be the time-instant such that h(ti) = 0, we aim to prove that when
t→ ti then the quantity

1
h(t)

(x(t)− x(t− h(t)))T R (x(t)− x(t− h(t))) (3.84)

is bounded. Rewrite it in the form

h(t)
(
x(t)− x(t− h(t))

h(t)

)T
R

(
x(t)− x(t− h(t))

h(t)

)
(3.85)

Then when t → ti we have
x(t)− x(t− h(t))

h(t)
→ ẋ(ti) since x(t) is differentiable. Moreover,

as x(t) is finite for all t ∈ R+ this proves that (3.84) remains bounded when t → ti. Finally

bounding −hmax
h(t)

by −1 we get

V̇3(t) = h2
maxẋ(t)TRẋ(t)− (x(t)− x(t− h(t)))T R (x(t)− x(t− h(t))) (3.86)

Gathering all the derivative terms V̇i we get the following quadratic inequality:

V̇ (t) ≤ X(t)TΨ(ρ, ρ̇)X(t) < 0 (3.87)
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with

Ψ(ρ, ρ̇) =




Ψ11(ρ, ρ̇) P (ρ)Ah(ρ) +R P (ρ)E(ρ)
? −(1− µ)Q−R 0
? ? 0


+ h2

maxT (ρ)TRT (ρ)

X(t) = col(x(t), x(t− h(t)), w(t))
T =

[
A(ρ) Ah(ρ) E(ρ)

]

Ψ11(ρ, ρ̇) = A(ρ)TP (ρ) + P (ρ)A(ρ) +Q−R

To introduce L2 performances test into the LMI condition, an Hamiltonian function H is
constructed and defined as

H(t) = V (t)−
∫ t

0
γw(θ)Tw(θ)− γ−1z(θ)T z(θ)dθ (3.88)

If the hamiltonian function satisfies Ḣ < 0 for all non zero X(t) then have

lim
t→+∞

H(t) = lim
t→+∞

V (t)− V (0)−
∫ t

0
γw(θ)Tw(θ)− γ−1z(θ)T z(θ)dθ < 0 (3.89)

Assuming zero initial conditions (i.e. V (0) = 0) and that the system is asymptotically stable
(limt→+∞ V (t) = 0) then we get

lim
t→+∞

H = −
∫ t

0
γw(θ)Tw(θ)− γ−1z(θ)T z(θ)dθ < 0 (3.90)

Finally we have ∫ t

0
γw(θ)Tw(θ)− γ−1z(θ)T z(θ)dθ > 0 (3.91)

which is equivalent to
γ||w||2L2

− γ−1||z||2L2
> 0 (3.92)

and thus
||z||L2

||w||L2

< γ2 (3.93)

Expanding z(t) into the expression of Ḣ leads to

Ḣ ≤ V̇ − γw(t)Tw(t) + γ−1X(t)T




C(ρ)T

Ch(ρ)T

F (ρ)T



[
C(ρ) Ch(ρ) F (ρ)

]
X(t) (3.94)

Finally performing a Schur complement onto term

−




C(ρ)T hmaxA(ρ)TR
Ch(ρ)T hmaxAh(ρ)TR
F (ρ)T hmaxE(ρ)TR



[
−γ−1I 0

0 −R−1

] [
C(ρ) Ch(ρ) F (ρ)

hmaxRA(ρ) hmaxRAh(ρ) hmaxRE(ρ)

]

leads to LMI (3.80). Finally, noting that ρ̇ ∈ hull[Uν] enters linearly in the LMI, it suffices
to check the LMI only at the vertices which are the elements of Uν. This concludes the proof.
�
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3.5.2 Associated Relaxation

It is clear from the expression of LMI (3.80) that this criterium is not very suited for stabiliza-
tion purposes due to the product terms PA,RA . . . . Indeed, by introducing the closed-loop
system state-space into LMI conditions, due to coupling terms, the linearization is an im-
possible task without considering (strong) assumptions. In many problems, the common
simplification would be to consider ’proportional’ matrices in the sense that

R = εP

where ε > 0 is a chosen fixed scalar. It is clear that such a simplification is very conservative
since the initial space of decision

Sn++ × Sn++ × Sn++

is reduced to

Sn++ × Sn++

The idea that we propose here is, rather to simplify the stabilization conditions after
introducing the closed-loop system expression, we turn the initial LMI condition into a form
which better fits the stabilization problem [Tuan et al., 2001]. Roughly speaking, a LMI is
efficient for a stabilization problem if there is only one coupling between a decision matrix
and system variables. This decision matrix is not a Lyapunov variable but is a ’slack’ variable
introduced by applying the Finsler’s Lemma (see Appendix E.16). Using this lemma we
obtain the following relaxation to LMI (3.80):

Lemma 3.5.2 System (3.78) is asymptotically stable for all h ∈ H ◦
1 and satisfies ||z||L2 ≤

γ||w||L2 if there exist a continuously differentiable matrix function P : Uρ → Sn++, constant
matrices Q,R ∈ Sn++, a matrix function X : Uρ → Rn×n and γ > 0 such that the LMI




−X(ρ)H P (ρ) +X(ρ)TA(ρ) X(ρ)TAh(ρ) X(ρ)TE(ρ) 0 X(ρ)T hmaxR
? Ψ22(ρ, ν) R 0 C(ρ)T 0 0
? ? −(1− µ)Q−R 0 Ch(ρ)T 0 0
? ? ? −γIm F (ρ)T 0 0
? ? ? ? −γIp 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R




≺ 0

(3.95)
with

Ψ22(ρ, ν) = ∂ρP (ρ)ν − P (ρ) +Q−R (3.96)

holds for all (ρ, ν) ∈ Uρ × Uν .

Proof : The proof is inspired from Tuan et al. [2001]. Rewrite (3.95) as

M(ρ, ν) +
[
P(ρ)TX(ρ, ρh)Q

]H ≺ 0
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with

M(ρ, ν) =




0 P (ρ) 0 0 0 0 hmaxR
? Ψ22(ρ, ν) R 0 C(ρ)T 0 0
? ? −(1− µ)Q(ρh)−R 0 Ch(ρ)T 0 0
? ? ? −γI F (ρ)T 0 0
? ? ? ? −γI 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R




P(ρ) =
[
−I A(ρ) Ah(ρ) E(ρ) 0 I 0

]

Q =
[
I 0 0 0 0 0 0

]

Noting that explicit basis of the null-space of P and Q are given by

Ker(P(ρ)) =




A(ρ) Ah(ρ) E(ρ) I 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 0 I 0
0 0 0 I 0 0
0 0 0 0 0 I




Ker(Q) =




0 0 0 0 0 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I




(3.97)
and applying the projection lemma (see Appendix E.18) we get the two underlying LMIs




Ψ11(ρ) P (ρ)Ah(ρ) +R P (ρ)E(ρ) C(ρ)T P (ρ) hmaxA(ρ)TR
? −(1− µ)Q−R 0 Ch(ρ)T 0 hmaxAh(ρ)TR
? ? −γI F (ρ)T 0 hmaxE(ρ)TR
? ? ? −γI 0 0
? ? ? ? −P (ρ) 0
? ? ? ? ? −R



≺ 0 (3.98)




−P (ρ) +Q−R+ ∂ρP (ρ)ν R C(ρ)T 0 0 0
? −(1− µ)Q−R Ch(ρ)T 0 0 0
? ? −γI F (ρ)T 0 0
? ? ? −γI 0 0
? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? −R



≺ 0

(3.99)
LMI (3.98) is equivalent to (3.95) modulo a Schur complement (see Appendix E.15). Hence

this shows that feasibility of (3.95) implies feasibility of (3.98) and (3.99). This concludes the
proof. �

Although (3.95) implies (3.80), it also implies LMI (3.99) which is not always satisfied.
Thus conservatism is induced while imposing supplementary constraints: among others the
left-upper block gives −P (ρ) + Q(ρ) − R + ∂ρP (ρ)ν < 0 and the 2 × 2 right-bottom block
gives −P (ρ) +h2

maxR < 0 (invoking the Schur’s complement) which restrict the initial set for
decision variables. Nevertheless, several tests have shown that it gives relatively good results
in terms of H∞ level bound and delay-margin computation, this will be illustrated in Section
5.1.1.



146 CHAPTER 3. DEFINITIONS AND PRELIMINARY RESULTS

3.5.3 Reduced Simple Lyapunov-Krasovskii functional

Another result based on a simple Lyapunov-Krasovskii functional is provided. This results
aims at reducing the computational complexity of the stability test obtained from Lyapunov-
Krasovskii functional (3.79) when the matrices Ah and Ch take the following form:

Assumption 3.5.3

Ah(ρ) =
[
A11
h (ρ) 0

A21
h (ρ) 0

]
Ch(ρ) =

[
C ′h(ρ) 0

]
(3.100)

it is possible to reduce the complexity of the Lyapunov-Krasovskii functional. Indeed, as
illustrated above, the second part of the state is not affected by the delay and thus this state
information can be removed from the part of the Lyapunov-Krasovskii functional dealing with
the stability analysis of the delayed part. It is interesting to note that such a representation
occurs in the filtering problem of time-delay systems using a memoryless filter [Zhang and
Han, 2008] or by controlling a time-delay system using a memoryless dynamic controller.
Indeed, in each of this case, the second part of the state is either the filter or controller state,
which are not affected by the delay (provided that no delay acts on the control input of the
system).

Note that it is possible to write Ah(ρ) = A′h(ρ)Z and Ch(ρ) = C ′h(ρ)Z where

Z =
[
I 0

]
A′h(ρ) =

[
A11
h

A21
h

]
(3.101)

Hence there is no increase of conservatism by considering the Lyapunov-Krasovskii func-
tional

V (t) = V1(t) + V2(t) + V3(t)
V1(t) = x(t)TP (ρ)x(t)
V2(t) =

∫ t
t−h(t) x(θ)TZTQ(ρ(θ))Zx(tθ)dθ

V3(t) =
∫ 0
−hmax

∫ t
t+θ ẋ(η)TZTRZẋ(η)dηdθ

(3.102)

which gives rise to the following result:

Lemma 3.5.4 System (3.78) with assumption 3.5.3 is asymptotically stable for all h ∈ H ◦
1

and satisfies ||z||L2 ≤ γ||w||L2 if there exist matrix a continuously differentiable matrix func-
tion P : Uρ → Sn++, constant matrices Q,R ∈ Sn++ and a scalar γ > 0 such that the LMI




Ψ′11(ρ, ν) P (ρ)A′h(ρ) +R P (ρ)E(ρ) C(ρ)T hmaxA(ρ)TZTR
? −(1− µ)Q(ρh)−R 0 C ′h(ρ)T hmaxA

′
h(ρ)TZTR

? ? −γIm F (ρ)T hmaxE(ρ)TZTR
? ? ? −γIp 0
? ? ? ? −R



≺ 0 (3.103)

with
Ψ′11(ρ, ν = A(ρ)TP (ρ) + PA(ρ) + ∂ρP (ρ)ν + ZT (Q(ρ)−R)Z (3.104)

holds for all (ρ, ρh, ν) ∈ Uρ × Uρh
× Uν .
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Proof : Similarly as in the proof of Lemma 3.5.1, the time-derivative of the Lyapunov-
Krasovskii functional (3.102) can be expressed and bounded as follows

V̇1(t) = ẋ(t)TP (ρ)x(t) + ẋ(t)P (ρ)x(t)T + x(t)T∂ρP (ρ)ρ̇x(t)
V̇2(t) ≤ x(t)TZTQ(ρ)Zx(t)− (1− µ)x(t− h(t))TZTQ(ρh)Zx(t− h(t))
V̇3(t) ≤ h2

maxẋ(t)TZTRZẋ(t)− (x(t)− x(t− h(t)))TZTRZ(x(t)− x(t− h(t)))
(3.105)

Gathering all the derivative terms V̇i we get the following quadratic inequality:

V̇ (t) ≤ X(t)TΨ′(ρ, ν)X(t) < 0 (3.106)

Ψ′(ρ, ν) =




Ψ′11(ρ, ρ̇) P (ρ)A′h(ρ) + ZTR P (ρ)E(ρ)
? −(1− µ)Q−R 0
? ? 0


+ h2

maxT (ρ)TRT (ρ)

X(t) = col(x(t), Zx(t− h(t)), w(t))
T (ρ) =

[
A(ρ) A′h(ρ) E(ρ)

]

Ψ11(ρ, ρ̇) = A(ρ)TP (ρ) + P (ρ)A(ρ) + ZTQZ − ZTRZ

Adding the constraint
∫ t

0
γw(η)Tw(η)− γ−1z(η)T z(η)dη > 0 (3.107)

to the Lyapunov function in view of constructing the Hamiltonian function we get

Ḣ ≤ V̇ − γw(t)Tw(t) + γ−1X(t)T




C(ρ)T

C ′h(ρ)T

F (ρ)T



[
C(ρ) C ′h(ρ) F (ρ)

]
X(t) (3.108)

Finally performing a Schur complement onto term

−




C(ρ)T hmaxA(ρ)TZTR
C ′h(ρ)T hmaxA

′
h(ρ)TZTR

F (ρ)T hmaxE(ρ)TZTR



[
−γ−1I 0

0 −R−1

] [
C(ρ) C ′h(ρ) F (ρ)

hmaxRZA(ρ) hmaxRZA
′
h(ρ) hmaxRZE(ρ)

]

leads to LMI (3.103). Finally, noting that ρ̇ ∈ hull[Uν] enters linearly in the LMI, it suffices
to check the LMI only at the vertices which are the elements of Uν. This concludes the proof.
�

3.5.4 Associated Relaxation

Similarly as for lemma 3.5.1, it is convenient to construct a relaxation lemma which will be
of interest further in the thesis.

Lemma 3.5.5 System(3.78) with assumption 3.5.3 is asymptotically stable for all h ∈ H ◦
1

and satisfies ||z||L2 ≤ γ||w||L2 if there exist a continuously differentiable matrix function
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P : Uρ→ Sn++, a matrix function X : Uρ → Rn×n, constant matrices Q,R ∈ Sn++ and γ > 0
such that the LMI




−X(ρ)H P (ρ) +X(ρ)TA(ρ) X(ρ)TAh(ρ) X(ρ)TE(ρ) 0 X(ρ)T hmaxZ
TR

? Ψ′22(ρ, ν) R 0 C(ρ)T 0 0
? ? −(1− µ)Q−R 0 Ch(ρ)T 0 0
? ? ? −γIm F (ρ)T 0 0
? ? ? ? −γIp 0 0
? ? ? ? ? −P (ρ) −hmaxZTR
? ? ? ? ? ? −R




≺ 0

(3.109)
with

Ψ′22(ρ, ν) = ∂ρP (ρ)ν − P (ρ) + ZT (Q−R)Z (3.110)

holds for all (ρ, ν) ∈ Uρ × Uν .

Proof : The proof is similar to the proof of lemma 3.5.2. �
This ends the section on results based on simple Lyapunov-Krasovskii functionals. The

interest of such functionals, despite of the conservatism, is to to not rely on model trans-
formations and bounding of cross-terms. The next section generalizes these functionals to a
more ’complete’ form in order to obtain less and less conservative results.

3.6 Discretized Lyapunov-Krasovskii Functional for systems
with time varying delay and Associated Relaxation

The current subsection aims at improving previous results based on simple Lyapunov-Krasovskii
functionals of the form (3.79) and (3.102). It is clear that, compared to complete Lyapunov-
Krasovskii functionals defined in [Gu et al., 2003, Han, 2005b], the conservatism comes from
the fact that the matrices Q and R are constant with respect to the integration parameter.
Moreover, another advantage of the discretization approach is to divide the delay into smaller
fragments in order to reduce the conservatism induced by the Jensen’s inequality. To see this,
let us consider the following example:

Example 3.6.1 In this example we will consider the function ẋ(θ) = θ and we will analyze
the gap between the following integral

I1 := −
∫ t

t−h
ẋ(θ)2dθ

I2 := −1
h

(∫ t

t−h
ẋ(θ)dθ

)2 (3.111)
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were h > 0 and t ∈ R+. Then we can write

I1 = −
∫ t

t−h
θ2dθ

=
1
3

((t− h)3 − t3)

=
1
3

(3th2 − 3t2h− h3)

I2 = −1
h

(∫ t

t−h
ẋ(θ)dθ

)2

= − 1
4h

(t2 − (t− h)2)2

=
1
4

(4th2 − 4t2h− h3)

(3.112)

The Jensen’s inequality claims that I2 ≥ I1 and hence the conservatism gap is given by
the positive difference between I2 and I1, namely δI21:

δI21 := I2 − I1

=
1
4

(4th2 − 4t2h− h3)− 1
3

(3th2 − 3t2h− h3)

=
1
12
h3

(3.113)

This shows that the gap between the initial integral term and its corresponding bounds
varies proportionally to the cube of the delay value. Hence, this suggests that by considering
smaller delay values it might be possible to reduce the conservatism of the approach. First of
all, decompose I1 into

I1 =
∫ t−h/2

t−h
ẋ(θ)2dθ +

∫ t

t−h/2
ẋ(θ)2dθ (3.114)

Let us consider the sum of the Jensen’s bound of each integral term

I3 := −2
h



(∫ t−h/2

t−h
ẋ(θ)dθ

)2

+

(∫ t

t−h/2
ẋ(θ)dθ

)2

 (3.115)

Using the explicit expression of ẋ(θ) we get

I3 = − 2
4h

[(
(t− h/2)2 − (t− h)2

)2 +
(
t2 − (t− h/2)2

)2]

= −t2h+ th2 − 5
16
h3

(3.116)

The corresponding gap δI31 := I3 − I1 is then given by

δI31 =
1
48
h3 (3.117)

By fragmenting the delay up to order 3 we get

I4 := − 3
4h

[(
(t− 2h/3)2 − (t− h)2

)2 +
(
(t− h/3)2 − (t− 2h/3)2

)
+
(
t2 − (t− h/3)2

)2]

= −t2h+ th2 − 35
108

h3

(3.118)
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and the resulting gap δI41 := I4 − I1 is given by

δI41 =
1

108
h3 (3.119)

This example shows that by increasing the order of the fragmentation it is possible to
reduce the conservatism brought by the use of the Jensen’s inequality. It is interesting to
note that since the gap evolves as a polynomial of degree 3 and for each fragmentation the
degree will remain to 3 (this is an intrinsic property related to the fact that ẋ(θ) is of degree
1). Fragmenting the delay will decrease the coefficient only meaning that for greater order of
fragmentation the conservatism will be reduced. This has been also noticed in [Gouaisbaut
and Peaucelle, 2006a,b, Han, 2008]. As a conjectural result, it can be shown that

δIN1 := IN − I1

=
1

12N2
h3 (3.120)

where N is the fragmentation order and IN is given by the expression

IN := −N
4h

N−1∑

i=0

[(
t− N − i− 1

N
h

)2

−
(
t− N − i

N
h

)2
]2

(3.121)

3.6.1 Discretized Lyapunov-Krasovskii functional

According to latter remarks, we introduce the following Lyapunov-Krasovskii functional [Han,
2008]:

V (xt, ẋt) = V1(x(t)) + V2(xt) + V3(ẋt)
V1(x(t)) = x(t)TPx(t)

V2(xt) =
N−1∑

i=0

∫ t−ihN (t)

t−(i+1)hN (t)
x(θ)TQix(θ)dθ

V3(ẋt) =
N−1∑

i=0

∫ −ih̄

−(i+1)h̄

∫ t

t+θ
ẋ(η)T h̄Riẋ(η)dηdθ

(3.122)

with hN (t)
4
=
h(t)
N

and h̄
4
=
hmax
N

. This Lyapunov-Krasovskii functional gives the following
result:

Lemma 3.6.2 System (3.78) is asymptotically stable for all h ∈ H ◦
1 and satisfies ||z||L2 ≤

γ||w||L2 if there exist a continuously differentiable matrix P : Uρ → Sn++, constant matrices
Qi, Ri ∈ Sn++, i ∈ {0, . . . , N − 1} and a scalar γ > 0 such that the LMI




M11 Γ2(ρ)T h̄Γ1(ρ)TR0 . . . h̄Γ1(ρ)TRN−1

? −γI 0 . . . 0
? ? −h̄R0

? ?
. . .

? ? −h̄RN−1



≺ 0 (3.123)
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holds for all (ρ, ν) ∈ Uρ × Uν where

M11 =




M11 R0 0 0 . . . P (ρ)Ah(ρ) P (ρ)E(ρ)
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 −γI




(3.124)

M11 = A(ρ)TP (ρ) + P (ρ)A(ρ) + ∂ρP (ρ) +Q0 −R0

N
(1)
i = −(1− iµN )Qi−1 + (1 + iµN )Qi −Ri−1 −Ri

N (2) = −(1− µ)QN−1 −RN−1

Γ1(ρ) =
[
A(ρ) 0 0 0 . . . Ah(ρ) E(ρ)

]

Γ2(ρ) =
[
C(ρ) 0 0 . . . Ch(ρ) F (ρ)

]

µN = µ/N

Proof :
Computing the derivative of (3.122) along the trajectories solutions of system (3.22) and

with similar arguments as for the proof of lemma 3.5.1 we get:

V̇ (t) ≤ Y (t)T




M11 R0 0 0 . . . P (ρ)Ah(ρ) P (ρ)E(ρ)
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 0




Y (t)

+h̄
∑N−1

i=0 Y (t)TΓT1 (ρ)Γ1(ρ)Y (t)

(3.125)

with

M11 = A(ρ)TP (ρ) + P (ρ)A(ρ) + ∂ρP (ρ) +Q0(ρ0)−R0

N
(1)
i = −(1− iµN )Qi−1 + (1 + iµN )Qi −Ri−1 −Ri

N (2) = −(1− µ)QN−1 −RN−1

Γ1(ρ) =
[
A(ρ) 0 0 0 . . . Ah(ρ) E(ρ)

]

Y (t) = col(x(t), x1(t), x2(t), . . . , xN (t), w(t))
xi(t) = x(t− ihn(t))
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The time-derivative of the Hamiltonian function is negative definite if and only if

Ḣ(t) ≤ Y (t)T




M11 R0 0 0 . . . P (ρ)Ah(ρ) P (ρ)E(ρ)
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 −γI




Y (t)

+h̄
∑N−1

i=0 Y (t)TΓT1 (ρ)Γ1(ρ)Y (t) + γ−1Y (t)TΓT2 (ρ)Γ2(ρ)Y (t)

(3.126)

with
Γ2(ρ) =

[
C(ρ) 0 0 . . . Ch(ρ) F (ρ)

]
(3.127)

Then in virtue of the Schur complement with respect to terms

+h̄
N−1∑

i=0

Y (t)TΓT1 (ρ)Γ1(ρ)Y (t) + γ−1Y (t)TΓT2 (ρ)Γ2(ρ)Y (t)

we get 


M11 Γ2(ρ)T h̄Γ1(ρ)TR0 . . . h̄Γ1(ρ)TRN−1

? −γI 0 . . . 0
? ? −h̄R0

? ?
. . .

? ? −h̄RN−1



≺ 0 (3.128)

with

M11 =




M11 R0 0 0 . . . P (ρ)Ah(ρ) P (ρ)E(ρ)
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 −γI




(3.129)

This concludes the proof. �
This result allows to obtain less conservative results than by using lemma 3.5.1 since on

one hand, extra degree of freedom are added by fragmenting the delay which is equivalent to
choose piecewise constant continuous functions Q(θ) and R(θ). On the second hand, the the
fragmentation of the delay reduced the conservatism of the Jensen’s inequality.

It is also important to notice that similar results are obtained in [Gouaisbaut and Peau-
celle, 2006b, Peaucelle et al., 2007]. However, these results are based on translation of the
state by fragmented time-invariant delays which makes the problems more difficult when time-
varying delays are considered. The approach provided here is not based on any translation
of the state and hence the problem of time-varying delays does not hold. The derived results
are actually based only on the application of the Lyapunov-Krasovskii’s theorem using the
functional (3.122), as done in [Han, 2008].
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N 1 2 3 4
hmax 4.4721 5.7175 5.9678 6.0569

nb vars 9 15 21 27
hmax [Gouaisbaut and Peaucelle, 2006b] 4.4721 5.71 5.91 6.03

nb vars [Gouaisbaut and Peaucelle, 2006b] 9 50 147 324

Table 3.1: Delay margin of system (3.130) using lemma 3.6.2 compared to results of [Gouais-
baut and Peaucelle, 2006b]

Example 3.6.3 Let us consider the time-delay system [Gouaisbaut and Peaucelle, 2006b]

ẋ(t) =
[
−2 0
0 −0.9

]
x(t) +

[
−1 −1
0 −1

]
x(t− h) (3.130)

where the delay is constant. The analytical maximal delay value for which the system is
asymptotically stable is hanalytical = 6.17. Table 3.1 provides results using lemma 3.6.2. For
N = 1, lemma 3.6.2 coincides with lemma 3.5.1.

On the other hand, by increasing N , the bound on the delay margin is less and less
conservative which shows the interest of the approach. Compared to results of [Gouaisbaut
and Peaucelle, 2006b], the results are roughly identical for each fragmentation order. On the
other hand, since in [Gouaisbaut and Peaucelle, 2006b] for each fragmentation number, the
state of the system is augmented in order to contain every delayed states (for each fragment),
then the number of decision matrices grows very quickly. Indeed, the number of decision
variables with lemma 3.6.2 is given by

1
2

(2N + 1)n(n+ 1) (3.131)

and a size of LMI constraint (3.123)

n(2N + 1)× n(2N + 1) (3.132)

where n is the dimension of the system and N the order of fragmentation. For instance, the
number of variables is 27 for a system dimension n = 2 and an order of discretization N = 4;
as shown in the previous example. On the other hand, the approach in [Gouaisbaut and
Peaucelle, 2006b] results in a number of decision variables

1
2
Nn(1 + 2N)(NR+ 1) (3.133)

and a size of the principal LMI of
2Nn× 2Nn (3.134)

For instance, the number of variables is 27 for a system dimension n = 2 and an order of
discretization N = 4; as shown in the previous example.

When solving LMI problem with interior point algorithms, the complexity (and thus the
time of computation) of the algorithm highly depend on the size of LMIs. Hence, the size of
LMIs is an important criterium to compare different methods. Actually, the LMI (3.123) can
be reduced to a lower size by a Schur complement (see Appendix E.15) which results in a LMI
of size n(N + 1)× n(N + 1) which is more competitive compared to method of [Gouaisbaut
and Peaucelle, 2006a].
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3.6.2 Associated Relaxation

As for lemma 3.5.1, due to the multiple products between Lyapunov matrices (P (ρ), Ri) and
data matrices A,Ah and E, the linearization procedure is a difficult task in the control syn-
thesis problem. A relaxed version is provided in order to decouple these terms by introducing
a slack variable.

Lemma 3.6.4 System (3.78) is asymptotically stable for all h ∈ H◦1 and satisfies ||z||L2 ≤
γ||w||L2 if there exist a continuously differentiable matrix function P : Uρ → Sn++, a matrix
function X : Uρ → Rn×n, constant matrices Qi, Ri ∈ Sn++, i ∈ {0, . . . , N − 1} and a scalar
γ > 0 such that the LMI



−X(ρ)H U12(ρ) 0 X(ρ)T h̄1R0 . . . h̄1RN−1

? U22(ρ, ν) U23(ρ) 0 0 . . . 0
? ? −γI 0 0 . . . 0
? ? ? −P (ρ) −h̄1R0 . . . −h̄1RN−1

? ? ? ? −diag
i
Ri



≺ 0 (3.135)

holds for all (ρ, ρh, ν) ∈ Uρ × Uρh
× Uν and where

U22 =




U ′11 R0 0 0 . . . 0 0
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 −γI




(3.136)

U ′11 = ∂ρP (ρ)ρ̇− P (ρ) +Q0 −R0

N
(1)
i = −(1− iµN )Qi−1 + (1 + iµN )Qi −Ri−1 −Ri

N (2) = −(1− µ)QN−1 −RN−1

U12(ρ) =
[
P (ρ) +X(ρ)TA(ρ) 0 0 X(ρ)TAh(ρ) . . . 0 X(ρ)TE(ρ)

]

U23(ρ) =
[
C(ρ) 0 . . . 0 Ch(ρ) F (ρ)

]T

Proof : The proof is similar to the proof of Lemma 3.5.2. �

3.7 Simple Lyapunov-Krasovskii functional for systems with
delay uncertainty

We consider here LPV time-delay systems of the form

ẋ(t) = A(ρ)x(t) +A1
h(ρ)x(t− h(t)) +A2

h(ρ)x(t− hc(t)) + E(ρ)w(t)
z(t) = C(ρ)x(t) + C1

h(ρ)x(t− h(t)) + C2
h(ρ)x(t− hc(t)) + F (ρ)w(t)

(3.137)
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where the delays h(t) and hc(t) are assumed to satisfy the relation hc(t) = h(t) + θ(t) where
θ(t) ∈ [−δ, δ], δ > 0. The problem addressed in this section is the production of a delay-
dependent test for a time-delay system involving two-delays which are related by an algebraic
equation. Actually, this problem arises when stabilizing, observing or filtering a time-delay
systems by a process (controller, observer or filter) involving a delay which is different from
the system. In this problem the objectives can be:

1. Given hmax, find the maximal uncertainty bound δ for which the system remains stable

2. Given δ find the delay value hmax for which the system remains stable

When dealing with performances criterium such as H∞ level γ. Other combinations are
seeked:

1. Given hmax and γ, find the maximal uncertainty bound δ such that the LMI conditions
remain feasible

2. Given δ and γ, find the delay value hmax such that the LMI conditions remain feasible

3. Given hmax and δ, find the minimal L2 performances index γ for which the LMI condi-
tions remain feasible.

The following sections address the problem of finding a Lyapunov-Krasovskii functional
capturing both the stability/performances of system (3.137) and the algebraic equality hc(t) =
h(t) + θ(t). The last equality makes of this problem a new open problem which is has not
been addressed to our best knowledge.

3.7.1 Lyapunov-Krasovskii functional

The main idea in this problem is to capture both the maximal delay value for h but also
capture the fact that the relation hc(t) = h(t) + θ(t) exists with θ(t) ∈ [−δ, δ].

If a Lyapunov-Krasovskii functional of the form

V (xt, ẋt) = V1(xt) + V2(xt) + V3(xt) + V4(ẋt) + V5(ẋt)
V1(xt) = x(t)TPx(t)

V2(xt) =
∫ t

t−h(t)
x(θ)TQ1x(θ)dθ

V3(xt) =
∫ t

t−hc(t)
x(θ)TQ2x(θ)dθ

V4(ẋt) =
∫ 0

hmax

∫ t

t+θ
ẋ(η)TR1ẋ(η)dηdθ

V5(ẋt) =
∫ 0

hmax+δ

∫ t

t+θ
ẋ(η)TR2ẋ(η)dηdθ

(3.138)

were considered, it is clear that only the condition hcmax = hmax + δ would be taken into
account, but the ’global’ constraint h(t) = hc(t) + θ(t) would not. In such a case, the
delays would be considered as independent and only their maximal amplitude (i.e. hmax and
hmax+δ) would be mutually dependent. This shows that a new specific Lyapunov-Krasovskii
functional should be considered instead:
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V (xt) = Vn(xt) + Vu(xt)
where

Vn(xt) = x(t)TP (ρ)x(t) +
∫ t

t−h(t)
x(s)TQ1x(s)ds+

∫ 0

−hmax

∫ t

t+β
ẋ(s)ThmaxR1x(s)dsdβ

Vu(xt) =
∫ t

t−hc(t)
x(s)TQ2x(s)ds+

∫ δ

−δ

∫ t

t+β−h(t)
ẋ(s)R2ẋ(s)dsdβ

(3.139)
The main difference here is the term last term of Vu(xt) which introduces terms in t −

h(t) + δ and t− h(t)− δ which can be bounded by terms involving hc(t). This will be better
explained in the proof of the following theorem obtained from this specific functional (3.139):

Theorem 3.7.1 System (3.137) is delay-dependent stable with h(t) ∈ [0, hmax], hc(t) =
hc(t) + θ(t), θ(t) ∈ [−δ, δ], |ḣ(t)| < µ and |ḣc(t)| < µc such that ||z||L2 ≤ γ||w||L2 if there
exists a continuously differentiable matrix function P : Uρ → Sn++ and symmetric matrices
Q1, Q2, R1, R2 � 0 and a scalar γ > 0 such that




Ψ11(ρ, ρ̇) P (ρ)Ah(ρ) +R1 P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2 C(ρ)T

? −(1− µ)(Q1 +Q2)−R1 0 hmaxAh(ρ)TR1 Ah(ρ)TR2 Ch(ρ)T

? ? −γI hmaxE(ρ)TR1 E(ρ)TR2 F (ρ)T

? ? ? −R1 0 0
? ? ? ? −(2δ)−1R2 0
? ? ? ? ? −γI




≺ 0

(3.140)


Ψ11(ρ, ρ̇) P (ρ)A1
h(ρ) +R1 P (ρ)A2

h(ρ) P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2 C(ρ)T

? Ψ22 (1− µ)R2/δ 0 hmaxA
1
h(ρ)TR1 A1

h(ρ)TR2 C1
h(ρ)T

? ? Ψ33 0 hmaxA
2
h(ρ)TR1 A2

h(ρ)TR2 C2
h(ρ)T

? ? ? −γI hmaxE(ρ)TR1 E(ρ)TR2 F (ρ)T

? ? ? 0 0 0 0
? ? ? ? −R1 0 0

? ? ? ? ? −R2

2δ
0

? ? ? ? ? ? −γI




≺ 0

(3.141)
hold for all ρ ∈ Uρ and ν = col(νi) ∈ Uν where

Ψ11(ρ, ν) = A(ρ)TP (ρ) + P (ρ)A(ρ) +Q1 +Q2 +
N∑

i=1

∂P

∂ρi
νi −R1

Ψ22 = −(1− µ)(Q1 +R2/δ)−R1

Ψ33 = −(1− µc)Q2 − (1− µ)R2/δ

Ah = A1
h +A2

h

Ch = C1
h + C2

h
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Proof : Differentiating (3.139) along the trajectories solutions of the system (3.137) yields:

V̇n ≤ Y (t)T







Ψ11(ρ, ρ̇)−Q2 P (ρ)A1
h(ρ) +R1 P (ρ)A2

h(ρ) P (ρ)E(ρ)
? −(1− ḣ)Q1 −R1 0 0
? ? 0 0
? ? ? 0




+h2
max




A(ρ)T

A1
h(ρ)T

A2
h(ρ)T

E(ρ)T


R1

[
A(ρ) A1

h(ρ) A2
h(ρ) E(ρ)

]

Y (t)

V̇u = x(t)TQ2x(t)− (1− ḣc)x(t− hc(t))TQ2x(t− hc(t)) + 2δẋ(t)TR2ẋ(t)

−(1− ḣ(t))
∫ t+δ−h(t)

t−δ−h(t)
ẋ(s)TR2ẋ(s)ds

(3.142)

where Ψ11(ρ, ρ̇) = A(ρ)TP (ρ)+P (ρ)A(ρ)+Q1 +Q2 +
∂P

∂ρ
ρ̇−R1 and Y (t) =




x(t)
x(t− h(t))
x(t− hc(t))

w(t)


.

Moreover, note that we have the inequality

−
∫ t+δ−h(t)

t−δ−h(t)
ẋ(s)TR2ẋ(s)ds ≤ − sgn(h(t)− hc(t))

∫ t−hc(t)

t−h(t)
ẋ(s)TR2ẋ(s)ds

≤ − 1
|h(t)− hc(t)|

(∫ t−hc(t)

t−h(t)
ẋ(s)ds

)T
R2

(∫ t−hc(t)

t−h(t)
ẋ(s)ds

)

≤ −1
δ

(∫ t−hc(t)

t−h(t)
ẋ(s)ds

)T
R2

(∫ t−hc(t)

t−h(t)
ẋ(s)ds

)

(3.143)
This shows that two cases must be treated separately:

1. either when hc(ti) = h(ti) for some ti ≥ 0 and in this case x(ti− h(ti)) = x(ti− hc(ti)),
or

2. when hc(t) 6= h(t) for all t ≥ 0 and t 6= ti.

Case. 1: When hc(ti) = h(ti) the derivative of the Lyapunov-Krasovskii functional
reduces to

V̇ ≤ X(ti)T






Ψ11(ρ, ρ̇) P (ρ)Ah(ρ) +R1 P (ρ)E(ρ)
? −(1− ḣ(ti))(Q1 +Q2) 0
? ? 0




+






hmaxA(ρ)T hmaxA(ρ)T

hmaxAh(ρ)T hmaxAh(ρ)T

hmaxE(ρ)T hmaxE(ρ)T



[
R1 0
0 2δR2

] [
hmaxA(ρ) hmaxAh(ρ) hmaxE(ρ)
hmaxA(ρ) hmaxAh(ρ) hmaxE(ρ)

]
X(ti)

(3.144)
where X(t) = col(x(t), x(t− h(t)), w(t)) and Ah(ρ) = A1

h(ρ) +A2
h(ρ).
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And finally, a Schur complement yields LMI

X(ti)T




Ψ11(ρ, ρ̇) P (ρ)Ah(ρ) +R1 P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2

? −(1− ḣ(ti))(Q1 +Q2)−R1 0 hmaxAh(ρ)TR1 Ah(ρ)TR2

? ? 0 hmaxE(ρ)TR1 E(ρ)TR2

? ? ? −R1 0
? ? ? ? −(2δ)−1R2



X(ti) ≺ 0

(3.145)
Adding the input/output constraint

−γw(ti)Tw(ti) + γ−1z(ti)T z(ti) = −γw(ti)Tw(ti) + γ−1X(ti)T




C(ρ)T

Ch(ρ)T

F (ρ)T






C(ρ)T

Ch(ρ)T

F (ρ)T



T

X(ti)

(3.146)
with Ch(ρ) = C1

h(ρ) + C2
h(ρ).

A Schur complement leads to the final LMI for the case 1:




Ψ11(ρ, ρ̇) P (ρ)Ah(ρ) +R1 P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2 C(ρ)T

? −(1− ḣ(ti))(Q1 +Q2)−R1 0 hmaxAh(ρ)TR1 Ah(ρ)TR2 Ch(ρ)T

? ? −γI hmaxE(ρ)TR1 E(ρ)TR2 F (ρ)T

? ? ? −R1 0 0
? ? ? ? −(2δ)−1R2 0
? ? ? ? ? −γI




≺ 0

(3.147)
Case. 2: When t ≥ 0 and t 6= ti then we have

V̇ ≤ Y (t)T







Ψ11(ρ, ρ̇) P (ρ)A1
h(ρ) +R1 P (ρ)A2

h(ρ) P (ρ)E(ρ)
? −(1− ḣ(t))Q1 −R1 0 0
? ? −(1− ḣc(t))Q2 0
? ? ? 0




+




A(ρ)T A(ρ)T

A1
h(ρ)T A1

h(ρ)T

A2
h(ρ)T A2

h(ρ)T

E(ρ)T E(ρ)T



[
hmaxR1 0

0 2δR2

] [
A(ρ) A1

h(ρ) A2
h(ρ) E(ρ)

A(ρ) Ah(ρ) A2
h(ρ) E(ρ)

]

Y (t)

−(1− ḣ(t))
δ

Y (t)T




0 0 0 0
? R2 −R2 0
? ? R2 0
? ? ? 0


Y (t)

(3.148)
and this leads to
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


Ψ11(ρ, ρ̇) P (ρ)A1
h(ρ) +R1 P (ρ)A2

h(ρ) P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2

? Ψ22 (1− ḣ(t))R2/δ 0 hmaxA
1
h(ρ)TR1 A1

h(ρ)TR2

? ? Ψ33 0 hmaxA
2
h(ρ)TR1 A2

h(ρ)TR2

? ? ? 0 hmaxE(ρ)TR1 E(ρ)TR2

? ? ? 0 0 0
? ? ? ? −R1 0
? ? ? ? ? −(2δ)−1R2




≺ 0

(3.149)
where Ψ22 = −(1− ḣ(t))Q1 − (1− ḣ)R2/δ −R1 and Ψ33 = −(1− ḣc(t))Q2 − (1− ḣ(t))R2/δ.

Finally, adding the same input/ouput constraint as for the case 1, yields




Ψ11(ρ, ρ̇) P (ρ)A1
h(ρ) +R1 P (ρ)A2

h(ρ) P (ρ)E(ρ) hmaxA(ρ)TR1 A(ρ)TR2 C(ρ)T

? Ψ22 (1− ḣ(t))R2/δ 0 hmaxA
1
h(ρ)TR1 A1

h(ρ)TR2 C1
h(ρ)T

? ? Ψ33 0 hmaxA
2
h(ρ)TR1 A2

h(ρ)TR2 C2
h(ρ)T

? ? ? −γI hmaxE(ρ)TR1 E(ρ)TR2 F (ρ)T

? ? ? 0 0 0 0
? ? ? ? −R1 0 0
? ? ? ? ? −(2δ)−1R2 0
? ? ? ? ? ? −γI




≺ 0

(3.150)
Bounding −(1− ḣ(t)) ≤ −(1−µ) and −(1− ḣ(t)) ≤ −(1−µc) leads to the proposed result.

Finally considering that ρ̇ belongs to the polytope hull(Uν), the dependence on ρ̇ is relaxed. �
This lemma involves two LMIs where coupling terms are present: PA,RA, . . .. Hence

similarly as for latter results, it is convenient to introduce a relaxation of such a result. This
is given in the following section.

3.7.2 Associated Relaxation

Due to a high number of coupling terms, the relaxation of such a LMI is of interest while
considering it for a design purpose. Indeed, since multiple coupling generally makes the
linearization a difficult (impossible) task, the relaxation allows for a nice solution of the
problem, even if the relaxation result and the original solution are not equivalent.

The following result is obtained by using a similar method as for previous results, the
original Theorem 3.7.1 is relaxed using the projection lemma:

Theorem 3.7.2 System (3.137) is delay-dependent stable with h(t) ∈ [0, hmax], hc(t) =
hc(t) + θ(t), θ(t) ∈ [−δ, δ], |ḣ(t)| < µ and |ḣc(t)| < µc such that ||z||L2 ≤ γ||w||L2 if there
exists a continuously differentiable matrix function P : Uρ → Sn++ and symmetric matrices
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Q1, Q2, R1, R2 � 0, a matrix X : Uρ → Rn×n and a scalar γ > 0 such that




−X(ρ)H P (ρ) +X(ρ)TA(ρ) X(ρ)TAh(ρ) X(ρ)TE(ρ) 0 X(ρ)T hmaxR1 R2

? Θ11(ρ, ν) R1 0 C(ρ)T 0 0 0
? ? Θ22 0 Ch(ρ)T 0 0 0
? ? ? −γI F (ρ)T 0 0 0
? ? ? ? −γI 0 0 0
? ? ? ? ? −P (ρ) −hmaxR1 −R2

? ? ? ? ? ? −R1 0

? ? ? ? ? ? ? −R2

2δ




≺ 0

(3.151)
and [

Π11(ρ, ν) Π12(ρ)
? Π22(ρ)

]
≺ 0 (3.152)

hold for all ρ ∈ Uρ and where

Π11(ρ, ν) =




−X(ρ)H P (ρ) +X(ρ)TA(ρ) X(ρ)TA1
h(ρ) X(ρ)TA2

h(ρ) X(ρ)TE(ρ)
? Θ11(ρ, ν) R1 0 0
? ? Ψ22 (1− µ)R2/δ 0
? ? ? Ψ33 0
? ? ? ? −γI




Π12(ρ) =




0 X(ρ)T hmaxR1 R2

C(ρ)T 0 0 0
C1
h(ρ)T 0 0 0

C2
h(ρ)T 0 0 0
F (ρ)T 0 0 0




Π22(ρ) =




−γI 0 0 0
? −P (ρ) −hmaxR1 −R2

? ? −R1 0

? ? ? −R2

2δ




Θ11(ρ, ν) = −P (ρ) +Q1 +Q2 +
N∑

i=1

∂P

∂ρi
νi −R1

Θ22 = −(1− µ)(Q1 +Q2)−R1

Ψ22 = −(1− µ)(Q1 +R2/δ)−R1

Ψ33 = −(1− µc)Q2 − (1− µ)R2/δ

Ah = A1
h +A2

h

Ch = C1
h + C2

h

Proof : The proof is similar as for other relaxations. �
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3.8 Chapter Conclusion

This chapter has developed preliminary results which will be used in the remaining of the
thesis. First of all, fundamental definitions for the set of the delay and the parameters have
been detailed and explained.

Secondly, a new method to relax polynomially parameter dependent LMIs have been
developed. Indeed, it has the benefit of turning the initial LMI condition into a new LMI
condition whose dependence is linear only with respect to the parameters, at the expense of
an increase of the computational complexity through the addition of a ’slack’ variable.

Then a novel relaxation for concave nonlinearity has been presented which finds its interest
where the cone complementary algorithm cannot apply, i.e. when the involved matrices are
not constant. This method will be applied successfully in Section 5.1.3.

The following section has been devoted to the computation of the bounds on parameter
derivatives in the polytopic case and allows to deal easily with robust stability and synthesis
in the LPV polytopic approach.

A simple Lyapunov-Krasovskii has been presented with its associated relaxation. This
functional has proven its efficiency despite of its simplicity and this has motivated its use in
this thesis. The associated relaxation finds its interest in the design problems which greatly
simplifies the problem.

In order to improve latter results based on a simple functional, the following section
has been devoted to a discretized version of this functional where the decision matrices are
functions. Using this ’complete’ version it is possible to refine the results until reach theoretical
delay margin. Its associated relaxation allows to transfer the quality of the results from the
stability analysis to design purposes

Finally, a new Lyapunov-Krasovskii functional has been provided in order to analyze the
stability of a system with two delays which are coupled through an algebraic inequality. Such
case occurs when a time-delay systems is observed or controlled by an observer or a controller
with memory but implementing a delay different from the system one. This will be used in
Sections and 4.1.2 and 5.1.6.





Chapter 4

Observation and Filtering of LPV
time-delay systems

O
ne of the objectives of systems theory is to provide tools on observation and
filtering of systems. The objectives of observation and filtering is to estimate un-
measured signals or clean signals from eventual noises and/or disturbances provided

that a model of the system is available. However, conceptual differences remain between the
notion of filters and observers and will be emphasized in the introduction of this chapter.

An observer aims at estimating signals of a system by finding observer matrices such
that the state estimation error is asymptotically stable (exponentially stable is the linear
case). This means that, for every initial conditions of the observer, the observation error
will converge and remains to zero provided that no disturbances are active, in other words,
the autonomous linear differential equation governing the observation error is asymptotically
(exponentially) stable. Moreover, it is important to note that a good observer should be able
to observe whatever the value of the state of the system is and hence the observation error
should be independent of the system state: this can be handled in the certain case only since in
the uncertain case the observation error depends on the current state. However, it is possible
to construct nonlinear observers which makes the error converges to zero even if the state
is nonzero [Boutayeb and Darouach, 2003, Gu and Poon, 2001]. As a final remark, the use
of observers is better suited for controlling purposes since the observer estimates sufficiently
well the system state, allowing the use of a state-feedback.

On the other hand, the filtering of system does not require any stability of a ’filtering
error’ but aims at guaranteeing a minimal attenuation, in some norm sense, of a residual
computed from the difference of a desired estimated signal and the estimate under action of
disturbances. In this case, the quality of the estimation would depend on the current state of
the system.

At first sight, it seems that filtering is less relevant than observation but actually each
way has its own benefits and drawbacks. While many observation approaches work well for
LTI and certain systems, when dealing with LPV systems, the problem is far more difficult.
Moreover, the class of systems that can be treated by observation theories is not as wide as
for filtering. Filtering approaches can address a large variety of systems and the resulting
problem is generally more simple to handle and for this reason, only filtering of LPV systems
is generally provided in the literature [Mohammadpour and Grigoriadis, 2006a,b, 2007a,b,
2008].

163
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When dealing with time-delay systems, the diversity of observers and filters is a bit larger
than for finite-dimensional linear dynamical systems. Indeed, it is possible to consider a
complementary information on the delay when it is available. This gives rise to the notion of
filters/observers with memory and memoryless observers/filters. It may seems uninteresting
to design memoryless observers and filters but actually, for two reasons, it is important to
consider them. First of all, implementing a delay in the observer/filter needs memory space
which can be incompatible with embedded applications; secondly, the real-time estimation
of the value of the current delay of a physical system remains a challenging open problem
[Belkoura et al., 2007, 2008, Drakunov et al., 2006].

In this chapter, we will be interested in both observation and filtering of LPV time-
delay systems. Observers that will be designed for the LPV case are based on an algebraic
approach, initially developed for LTI time-delay systems [Darouach, 2001, 2005]. Reduced-
order as well as full-order observers will be designed for LPV time-delay systems. Necessary
and sufficient conditions for their existence will be provided in terms of algebraic matrix
equalities and the stability of a functional differential equation. The computation of observer
matrices will be performed through by computing the solution of LMIs. An example of
filter design for uncertain LPV systems will also be introduced and is a generalization of the
method presented in [Tuan et al., 2001, 2003] to time-delay systems and it will be shown that
interesting performances are achieved.

It is important to point out that, in both filtering and observation case, only memory
processes with exact delay value is addressed and generally no robustness analysis is given in
presence of uncertainty on implemented delay. In [Sename and Briat, 2006, Verriest et al.,
2002], a robustness analysis is performed a posteriori in the case of constant delay according to
an application of the Rouché’s theorem (see Section 2.2.2 and appendix F.7). In this section,
robust filtering/observation with respect to delay uncertainty and parametric uncertainties
will be addressed and therefore the designed processes will remain stable even in presence of
(time-varying) delay-uncertainty provided that the delay implementation error remains in a
ball whose radius is a priori fixed or maximized by an optimization algorithm based on LMIs.
This problem has never been addressed in the literature and is one of the main points on this
section. In [Briat et al., 2007c], an Luenberger observer has been developed for LPV time-
delay systems using a free weighting approach [He et al., 2004]; the results are not presented
here since we will focus on more interesting observer synthesis techniques.

Hereunder a non exhaustive bibliography on observation and filtering of time-delay sys-
tems and LPV systems is provided:

• For pioneering works on observation of delay systems see [Bhat and Koivo, 1976, Fat-
touh, 2000, Fattouh et al., 1998, Gressang and Lamont, 1975, H.-Hashemi and Leondes,
1979, Lee and Olbrot, 1981, Ogunnaike, 1981, Pearson and Fiagbedzi, 1989, Sename,
2001]

• Concerning observers for nonlinear delay systems see [Germani et al., 1998, 1999, 2001,
2002, Pepe, 2001]

• Recent works on observation of linear time-delay systems [Chen, 2007, Koenig and Marx,
2004, Koenig et al., 2004, 2006, Picard and Lafay, 1996, Picard et al., 1996, Sename,
1997, Sename and Briat, 2006, Sename et al., 2001, Verriest et al., 2002]
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• Recent works on the filtering of time-delay systems [DeSouza et al., 1999, Fridman et al.,
2003a,b, Zhang and Han, 2008]

• Filtering of LPV systems [Borges and Peres, 2006, Tuan et al., 2001, 2003]

• Filters for LPV time-delay systems [Mohammadpour and Grigoriadis, 2006a,b, 2007a,
2008, Wu et al., 2006]

4.1 Observation of Unperturbed LPV Time-Delay Systems

This section is devoted to the design of observers and filters for LPV time-delay systems with-
out uncertainties. Several approaches will be provided depending on the type of filter/observer
(with or without memory) and the knowledge of the delay (exactly or approximately known
and unknown).

The observers designed in this section are based on the extension to the LPV case of the
method of Darouach [2001, 2005]. Throughout this section on observers the following class of
LPV time-delay system will be considered:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)
z(t) = Tx(t)
y(t) = Cx(t)

(4.1)

where x ∈ Rn, y ∈ Rm, u ∈ Rp, w ∈ Rq and z ∈ Rr are respectively the system state, the
system control input, the system measurements, the system exogenous inputs and the signal
to be estimated. In this framework, the observer aims at estimating as close as possible the
signal z(t) which is a linear combination of the state variables of the system. The matrix T
is assumed to have full row-rank and whenever rank(T ) = n then T = I. The delay h(t) is
assumed to belong to the set H1 and more specifically H ◦

1 recalled below:

H ◦
1 :=

{
h ∈ C1(R+, [0, hmax]) : |ḣ| < µ

}
(4.2)

The corresponding general observer is governed by the following expressions:

ξ̇(t) = M0(ρ)ξ(t) +Mh(ρ)ξ(t− d(t)) +N0(ρ)y(t) +Nh(ρ)y(t− d(t)) + S(ρ)u(t)
ẑ(t) = ξ(t) +Hy(t)

(4.3)

where ξ ∈ Rr, ẑ ∈ Rr are respectively the observer state and the estimated output. The
delay d(t) is unconstrained at this point and precisions on its set will be provided in each
forthcoming sections since it depends on the context and on the type of observer considered.
The matrices M0(ρ), Mh(ρ), N0(ρ), MH(ρ) and H are matrices of appropriate dimensions
which define the observer. Note that H is a constant matrix as ẑ is a linear combination of
the observer state and the measurement vector y.

It is worth mentioning that when dealing with such observer it is difficult to consider a
disturbance term on the measured output since during the design procedure, the measured
output needs to be differentiated. If it would depend on the disturbance w, then a term ẇ
would appear in the equations and then the disturbance vector should be augmented in order
to contain both w and ẇ (e.g. w̃ = col(w, ẇ)). This is a straightforward generalization of the
current method and is then not explored in the thesis.
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Definition 4.1.1 If r = n then the observer is called full-order observer while if T = Tr ∈
Rr×n such as rank(Tr) = r < n then the observer is called reduced-order observer.

The aim of the observer is to decouple the system state from the error e(t) = z(t)− ẑ(t)
as in [Darouach, 2001], that is we should have an equation of the form

ė(t) = f(et) + g(η(t)) (4.4)

where f(·) is a functional and g(·) is a function gathering other signals (such as disturbances)
excluding the state of the system. In this case, it is clear that if f(·) describes a stable vec-
tor field then the observation error has stable dynamics. Moreover, for every trajectories of
the system, the error will have the same behavior in terms of rate of convergence, response
time,. . . We will see that this ideal behavior can be only be achieved when the delay imple-
mented in the observer is identical to the delay involved in the system and when the system
is perfectly known (no uncertainties). Therefore such a behavior cannot be reached from a
practical point of view.

It will be shown that when the observation error cannot be isolated from the state of
the system and from this fact, only stable LPV time-delay system can be observed. Indeed,
suppose that the error obeys the following dynamical model

ė(t) = f(et) + g(xt) + h(η(t)) (4.5)

where f(·), g(·) are functionals and h(·) is a function gathering other signals. From this
expression even if f(·) is a stable vector field, then the error will remains bounded around 0
if and only if the other terms are bounded too (BIBO stability). However, if the system is
unstable then the term may be such that g(xt) → +∞ as t → +∞ and hence e(t) → +∞
as t → +∞. Such a behavior arises when dealing with observer involving a delay which is
different from the system one or using memoryless observers. An immediate choice would be
to consider the term g(xt) as a disturbance term and in many frameworks it would be correct,
for instance in a pure stabilization or α-stabilization problems where it is assumed that the
system is stable or controlled (i.e. x(t) does not tends to +∞ as t goes to ∞).

In the H∞ problem where an observer minimizing the influence of the disturbances onto
the observation error (in the L2 sense) is sought, we are faced to two possibilities:

1. either the vector of disturbances is augmented to contain both the initial disturbances
vector η(t) and the term g(xt) but in this case a loss of information occurs since the
relation between the disturbances η(t) and x(t) is not taken into account; or

2. the system is augmented in order to contain both the state of the system and the
observation error and in this case, the H∞ analysis/synthesis is more tight.

This is the last approach that we will considered throughout this section on observers.

4.1.1 Observer with exact delay value - simple Lyapunov-Krasovskii
functional case

In this section, the problem of observation of a LPV time-delay system with an observer
involving a delay identical to the system one is solved; see [Darouach, 2001] for the LTI case.
Even if this observer may be not implementable, the design approach is interesting and can



4.1. OBSERVATION OF UNPERTURBED LPV TIME-DELAY SYSTEMS 167

be extended to more complicated cases. The observer to be designed is then given by the
equations:

ξ̇(t) = M0(ρ)ξ(t) +Mh(ρ)ξ(t− h(t)) +N0(ρ)y(t) +Nh(ρ)y(t− h(t)) + S(ρ)u(t)
ẑ(t) = ξ(t) +Hy(t)

(4.6)

where ξ ∈ Rr, ẑ ∈ Rr are respectively the observer state and the estimated output.
First of all, the delay value is assumed to be exactly known in real time. The following

theorem provides a necessary and sufficient condition to the existence of such an observer.

Theorem 4.1.2 There exists an LPV H∞ observer with memory of the form (4.6) for system
of the form (4.1) if and only if the following statements hold:

1. The autonomous error dynamical expression ė(t) = M0(ρ)e(t) + Mh(ρ)e(t − h(t)) is
asymptotically stable where e(t) = z(t)− ẑ(t) and h ∈H ◦

1 .

2. (T −HC)A(ρ)−N0(ρ)C −M0(ρ)(T −HC) = 0

3. (T −HC)Ah(ρ)−Nh(ρ)C −Mh(ρ)(T −HC) = 0

4. (T −HC)B(ρ)− S(ρ) = 0

5. The inequality ||e||L2 ≤ γ||w||L2 holds for some γ > 0

Proof : First let e(t) = z(t)− ẑ(t) be the estimation error. The latter equality reduces to

e(t) = (T −HC)x(t)− ξ(t) (4.7)

according to the definition of ẑ(t) in (4.6). Computing the time derivative of e(t) we get

ė(t) = (T −HC)ẋ(t)− ξ̇(t)
= (T −HC) [A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)]
− [M0(ρ)ξ(t) +Mh(ρ)ξ(t− h(t)) +N0(ρ)y(t) +Nh(ρ)y(t− h(t))
+S(ρ)u(t)]

= [(T −HC)A(ρ)−N0(ρ)C]x(t)
+[(T −HC)Ah(ρ)−Nh(ρ)C]x(t− h(t))
+[(T −HC)B(ρ)− S(ρ)]u(t)−M0(ρ)ξ(t)−Mh(ρ)ξ(t− h(t))
+(T −HC)E(ρ)w(t)

(4.8)

Using ξ(t) = (T −HC)x(t)− e(t) obtained from (4.7) we get

ė(t) = [(T −HC)A(ρ)−N0(ρ)C −M0(ρ)(T −HC)]x(t)
+[(T −HC)Ah(ρ)−Nh(ρ)C −Mh(ρ)(T −HC)]x(t− h(t))
+[(T −HC)B(ρ)− S(ρ)]u(t) +M0(ρ)e(t) +Mh(ρ)e(t− h(t))
+(T −HC)E(ρ)w(t)

(4.9)

According to the discussion at the beginning of Section 4.1, we aim to obtain an error e
whose dynamical model is independent of the the control input, the current and delayed state
of the system. Hence by imposing

(T −HC)A(ρ)x(t)−N0(ρ)C −M0(ρ)(T −HC) = 0 (4.10)
(T −HC)Ah(ρ)x(t− h(t))−Nh(ρ)C −Mh(ρ)(T −HC) = 0 (4.11)

(T −HC)B(ρ)− S(ρ) = 0 (4.12)
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the error dynamical model reduces to

ė(t) = M0(ρ)e(t) +Mh(ρ)e(t− h(t)) + (T −HC)E(ρ)w(t) (4.13)

and is actually independent of the system state and control input.
Finally, if the latter dynamical model defines stable dynamics then it is possible to find a

γ > 0 such that ||e||L2 ≤ γ||w||L2. This concludes the proof. �
A theorem providing necessary and sufficient conditions for the existence of an observer of

the form (4.7) for systems (4.1) has been developed. It is worth noting that such a design can
be extended to H2, L∞-L∞ problems and so on. However, such a result is not constructive
and then Theorem 4.1.2 cannot be used for synthesis purposes. It can be divided in two parts

1. the first one involves nonlinear algebraic equations (statements 2 to 4) which are ’static’

2. the second part involves dynamic related conditions related to the stability of a system
and its worst-case energy gain

The first step of the solution is to explicitly define the set of all matrices satisfying statements
2 to 5. This is performed in the following lemma where it considered that the matrix H(ρ)
depends on the parameters while it should be constant. This condition will be relaxed when
the LMI conditions for gain computation will be provided.

Lemma 4.1.3 There exists a solution M0(ρ),Mh(ρ), N0(ρ), Nh(ρ), S(ρ), H(ρ) to equations
(4.10), (4.11) and (4.12) if and only if the following rank equality holds

rank




T 0
0 T
C 0
0 C

CA(ρ) CAh(ρ)
TA(ρ) TAh(ρ)




= rank




T 0
0 T
C 0
0 C

CA(ρ) CAh(ρ)




(4.14)

for all ρ ∈ Uρ.

Proof : Equation (4.12) is explicit since it suffices to find H then S is obtained by the
explicit expression

S(ρ) = (T −HC)B(ρ) (4.15)

On the other hand, the two equalities (4.10) and (4.11) are nonlinear due to terms

M0(ρ)(T −HC) Mh(ρ)(T −HC)

However rewriting them into the form

(T −H(ρ)C)A(ρ)x(t) + (M0(ρ)H(ρ)−N0(ρ))C −M0(ρ)T = 0 (4.16)
(T −H(ρ)C)Ah(ρ)x(t) + (Mh(ρ)H(ρ)−Nh(ρ))C −Mh(ρ)T = 0 (4.17)

shows that the change of variable

K0(ρ) = N0(ρ)−M0(ρ)H(ρ)
Kh(ρ) = Nh(ρ)−Mh(ρ)H(ρ)

(4.18)
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linearizes the expressions into

(T −H(ρ)C)A(ρ)x(t)−K0(ρ)C −M0(ρ)T = 0
(T −H(ρ)C)Ah(ρ)x(t)−Kh(ρ)C −Mh(ρ)T = 0

(4.19)

It is important to note that the change of variable is bijective and hence no conservatism
is introduced. Indeed, the set of matrices (M0(ρ),Mh(ρ),K0(ρ),Kh(ρ), H(ρ)) defines in a
unique way the set (M0(ρ),Mh(ρ), N0(ρ), Nh(ρ), H(ρ)) due to the change of variable (4.18).

Rewriting equalities (4.19) in a more compact matrix expression leads to

∇(ρ)Γ(ρ) = Λ(ρ) (4.20)

where

∇(ρ) =
[
M0(ρ) Mh(ρ) K0(ρ) Kh(ρ) H(ρ)

]
: Uρ → Rr×2r+3m

Γ(ρ) =




T 0
0 T
C 0
0 C

CA(ρ) CAh(ρ)




Λ(ρ) =
[
TA(ρ) TAh(ρ)

]

(4.21)

According to [Darouach, 2001, Koenig et al., 2006, Lancaster and Tismenetsky, 1985,
Mitra and Mitra, 1971], there exist solutions with H(ρ) to this expression if and only if

rank
[

Γ(ρ)
Λ(ρ)

]
= rank Γ(ρ) which is exactly (4.14). This concludes the proof. �

Whenever lemma 4.1.3 is satisfied then it is confirmed that there exists at least one solution
to equations (4.10), (4.11) and (4.12). The number of solution is either 1 or is infinite. We
are interested in the case of an infinite number of solutions since it is not guaranteed that the
unique solution engenders a stable error dynamical model.

A sufficient condition for an infinite number of solutions is that the number of unknown
variables (the number of coefficients in the unknown matrices) exceeds the number of equa-
tions (the number of coefficients in matrices of dimension equals to the order of the observer).
Hence, it suffices that the following condition

2 dim(z) dim(x) ≤ dim(z)2 + 3 dim(z) dim(y) (4.22)

holds. From this inequality it is possible to give more relevant conditions for the existence of
an infinite number of solutions, indeed we must have

dim(y) ≥ 2
3

(dim(x)− dim(z))

dim(z) ≥ dim(x)− 3
2

dim(y)
(4.23)

The first inequality indicates the minimal number of sensors that must be employed for
a given system dimension and observer order such that such an observer may exist. The
second inequality provides the minimal observer order that can be used for some given system
dimension and output dimension. It is worth noting that the problem may be unsolvable since
no consideration on the stability of the error is taken into account.



170 CHAPTER 4. OBSERVATION AND FILTERING OF LPV TIME-DELAY SYSTEMS

When the number of solution is infinite, the objective (and interest is to parametrize the
set of solution. The following lemma provides such a parametrization provided that lemma
4.1.3 is satisfied.

Lemma 4.1.4 Under conditions of theorem 4.1.3, the observer matrices are given by the
expressions M0 = Θ − LΞ, Mh = Υ − LΩ and H = Φ − LΨ where L is a free matrix of
appropriate dimensions and

Θ = TAU − ΛΓ+∆0

[
C
CA

]
U (4.24)

Ξ = −(I − ΓΓ+)∆0

[
C
CA

]
U (4.25)

Υ = TAhU − ΛΓ+∆h

[
C
CAh

]
U (4.26)

Ω = −(I − ΓΓ+)∆h

[
C
CAh

]
U (4.27)

Φ = ΛΓ+∆H (4.28)
Ψ = (I − ΓΓ+)∆H (4.29)
S = FB (4.30)
N0 = K0 +M0H (4.31)
Nh = Kh +MhH (4.32)
F = T −HC (4.33)

U is defined s.t.
[
T
T̄

]−1

=
[
U V

]
(4.34)

(4.35)

where T̄ is a full column rank matrix such that
[
T
T̄

]
is nonsingular and

∆0 =




0 0
0 0
Im 0
0 0
0 Im




∆h =




0 0
0 0
0 0
Im 0
0 Im




∆H =




0
0
0
0
Im




Proof : Provided that lemma 4.1.3 is verified, all the solutions of equation ∇(ρ)Γ(ρ) = Λ(ρ)
are given by the expression (see Appendix A.8 or [Darouach, 2001, Skelton et al., 1997]):

∇s(ρ) = Λ(ρ)Γ+(ρ)− L(ρ)(I − Γ(ρ)Γ+(ρ)) (4.36)

where L(ρ) is a free variable giving the parametrization of the set of solutions and is considered
as a generalized observer gain.

It is of interest to express these relations as functions of the generalized gain L(ρ) which
leads to [

K0(ρ) H(ρ)
]

= ∇s(ρ)∆0[
Kh(ρ) H(ρ)

]
= ∇s(ρ)∆h

H(ρ) = ∇s(ρ)∆H

(4.37)
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where ∆0, ∆h and ∆H are given by the expressions

∆0 =




0 0
0 0
I 0
0 0
0 I




∆h =




0 0
0 0
0 0
I 0
0 I




∆H =




0
0
0
0
I




(4.38)

Hence (4.10) and (4.11) are rewritten into the form:

M0(ρ)T = TA(ρ)−
[
K0(ρ) H(ρ)

] [ C
CA(ρ)

]
(4.39)

Mh(ρ)T = TAh(ρ)−
[
Kh(ρ) H(ρ)

] [ C
CAh(ρ)

]
(4.40)

Since T is a full row rank matrix then there exists a full row rank matrix T̄ such that

det
[
T
T̄

]
6= 0 (4.41)

Hence this matrix in invertible and we denote its inverse by
[
U V

]
. Then by right multi-

plying expressions (4.39) and (4.40) by
[
U V

]
we get

M0(ρ) = TA(ρ)U −
[
K0(ρ) H(ρ)

] [ C
CA(ρ)

]
U

Mh(ρ) = TAh(ρ)U −
[
Kh(ρ) H(ρ)

] [ C
CAh(ρ)

]
U

which are explicit formulae for observer matrices M0(ρ) and Mh(ρ). then M0(ρ) = Θ(ρ) −
L(ρ)Ξ(ρ), Mh(ρ) = Υ(ρ) − L(ρ)Ω(ρ) and H(ρ) = Φ(ρ) − L(ρ)Ψ(ρ) with matrices defined in
theorem 4.1.4. This concludes the proof. �

The problem of finding five distinct matrices (M0(·), Mh(·), N0(·), Nh(·), H(ρ)) under
the algebraic equality constraints (4.10), (4.11) and (4.12) has been turned into a problem of
finding a free ’generalized’ gain L(ρ) which parametrizes the set of all solutions to equations
(4.10), (4.11) and (4.12).

This transformation is the keypoint of this algebraic approach and makes the final problem
to be the ’good’ choice of such a generalized gain. It is clear that some elements in the set of
all observer matrices would give unstable error dynamics. Hence a ’good’ choice is synonym
to a choice giving good convergence properties, good disturbances rejection. We have chosen
in this thesis to consider the L2-induced norm of the transfer from the disturbances w(t) to
the observation error e(t) as a criterium to minimize for the choice of L(ρ) (i.e. we aim at
finding L(ρ) such that ||e||L2 ≤ γ||e||L2 where γ > 0 is as small as possible). It is clear that
other performances criteria could be used such as H2 or L∞ induced norm. Such a search
is difficult to perform analytically and it will be shown a bit later that such an optimization
problem can be cast as a SDP.

Now noting that by considering lemma 4.1.4 the state estimation error dynamics are
governed by the expression

ė(t) = (Θ(ρ)− L(ρ)Ξ(ρ))e(t) + (Υ(ρ)− L(ρ)Ω(ρ))eh(t) + FE(ρ)w(t) (4.42)



172 CHAPTER 4. OBSERVATION AND FILTERING OF LPV TIME-DELAY SYSTEMS

with F = T −HC = T − (Φ− LΨ)C.
It is important to point out that if FE = 0 then the observer totally decouples the

state estimation error e from the exogenous inputs w and thus the state estimation error is
autonomous. Observers having this property are called unknown input observers and some
additional material can be found in [Koenig and Marx, 2004, Koenig et al., 2004, Sename,
1997, Sename et al., 2001] and references therein.

In the following we will consider that FE 6= 0 and the objective is to minimize the impact
of the disturbances w(t) onto the error e(t) (in the L2 sense) by an appropriate choice of
the matrix L(ρ). Note that if there exists L(ρ) such that ||FE|| = 0 or is close to 0, the
algorithms would find out it.

Finally, according to the latter results on the family of observers with infinite cardinal, the
following theorem provides a constructive sufficient condition on the existence of an optimal
observer minimizing the L2-induced norm of the transfer from w(t) to e(t):

Theorem 4.1.5 There exists a parameter dependent observer of the form (4.6) for LPV
time-delay system (4.1) such that theorem 4.1.2 is satisfied for all h ∈ H ◦

1 if there exist
a continuously differentiable matrix function P : Uρ → Sr++, a matrix function Z : Uρ →
Rr×(2r+3m), constant matrices Q,R ∈ Sr++, X ∈ Rr×r, H̄ ∈ Rr×m and a positive scalar γ > 0
such that the following matrix inequality




−(X +XT ) ? ? ? ? ? ?
U21(ρ) U22(ρ, ν) ? ? ? ? ?
U31(ρ) R −Qµ −R ? ? ? ?
U41 0 0 −γIq ? ? ?
0 Ir 0 0 −γIr ? ?
X 0 0 0 0 −P (ρ) ?

hmaxR 0 0 0 0 −hmaxR −R




≺ 0 (4.43)

holds for all (ρ, ν) ∈ Uρ× Uν with

U21(ρ) = Θ(ρ)TX − Ξ(ρ)T L̄(ρ)T + P (ρ)
U31(ρ) = Υ(ρ)TX − Ω(ρ)T L̄(ρ)T

U22(ρ, ν) =
∂P (ρ)
∂ρ

− P (ρ) +Q−R

U41(ρ) = (ρ)E(ρ)T (T TX − CT H̄T )

and
L̄(ρ) = (XTΦ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+) (4.44)

Moreover, the gain is given by L(ρ) = X−T L̄(ρ) and we have ||e||L2 < γ||w||L2

Proof : Since the dynamical model of the observation error is a LPV time-delay system,
in order to derive constructive sufficient conditions for its stability, it is possible to consider
lemma 3.5.2 which consider such systems by providing a relaxation to the simple Lyapunov-
Krasovskii functional. Substituting the model of the estimation error (4.42) into LMI of
lemma 3.5.2 where the matrices C, Ch and F are respectively set to I, 0 and 0 (in order to
minimize the impact of the disturbances w onto the observation error e only) leads to
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


−(X +XT ) ? ? ? ? ? ?
V21(ρ) V22(ρ, ν) ? ? ? ? ?
V31 R −Qµ −R ? ? ? ?
V41 0 0 −γIq ? ? ?
0 Ir 0 0 −γIr ? ?
X 0 0 0 0 −P (ρ) ?

hmaxR 0 0 0 0 −hmaxR −R




≺ 0 (4.45)

with

V21(ρ) = (Θ(ρ)− L(ρ)Ξ(ρ))TX + P (ρ)
V31(ρ) = V31(ρ) = (Υ(ρ)− L(ρ)Ω(ρ))TX
V41 = E(ρ)T [T − (Φ(ρ)− L(ρ)Ψ(ρ))C]TX

V22(ρ, ν) =
∂P

∂ρ
− P (ρ) +Q−R

By considering the change of variable L̄(ρ) = XTL(ρ), the problem is linearized and results
in the following LMI:




−(X +XT ) ? ? ? ? ? ?
W21(ρ) V22(ρ, ν) ? ? ? ? ?
W31(ρ) R −Qµ −R ? ? ? ?
W41(ρ) 0 0 −γIq ? ? ?

0 Ir 0 0 −γIr ? ?
X 0 0 0 0 −P (ρ) ?

hmaxR 0 0 0 0 −hmaxR −R




≺ 0 (4.46)

with

W21(ρ) = Θ(ρ)TX − Ξ(ρ)T L̄(ρ)T + P (ρ)
W31(ρ) = V31(ρ) = Υ(ρ)TX − Ω(ρ)T L̄(ρ)T

W41 = E(ρ)T [XT (T − Φ(ρ)C) + L̄(ρ)Ψ(ρ)C]T

Actually the problem is still not solved yet since in the reconstruction of the observer, the
matrix H may depend on ρ. Indeed, it is worth noting that in the definition of the observer
(4.3), H is a constant matrix but in the construction procedure provided in Lemma 4.1.4, H
is allowed to be parameter varying which is an aberrant result. Hence, an extra constraint is
needed in order to enforce H as a constant matrix while using Lemma 4.1.4. This is developed
in the following. Since from lemma 4.1.4, H satisfies the relation

H = Φ(ρ)− L(ρ)Ψ(ρ) (4.47)

which implies

L(ρ)Ψ(ρ) = Φ(ρ)−H
L̄(ρ)Ψ(ρ) = XTΦ(ρ)− H̄
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with H̄ = XTH, L̄(ρ) = XTL(ρ) and since Ψ(ρ) is a full column rank matrix then the solution
of the equality is given by

L̄(ρ) = (XTΦ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+) (4.48)

for any Z(ρ) of appropriate dimensions (see Appendix A.8). This expression will guaran-
tee that for any matrix Z(ρ), the resulting H will be parameter independent. Moreover by
replacing the new expression of L̄ into the expressions

XTΘ(ρ)− L̄(ρ)Ξ(ρ)
XTΥ(ρ)− L̄(ρ)Ω(ρ)

of LMI (4.46) then we ensure that H is a constant in the expression of matrices M0(ρ) and
Mh(ρ). Finally, the problem reformulated in a LMI optimization problem (4.43) where the
matrix Z(ρ) is the new parametrizing (decision) matrix. �

Remark 4.1.6 It is important to note that the choice of the structure of the matrices P (ρ)
and Z(ρ) is crucial in such a problem. Actually, according to [Apkarian and Adams, 1998],
the idea is to ’mimic’ the dependence of the system on the parameters but no complete theory
is available to choose the structure of parameter dependent matrices.

On the other hand, it is possible to derive a detectability test by eliminating the matrix
Z(ρ) from (4.43) using the projection lemma (see Appendix E.18). However, this test will
only provide a sufficient optimal condition which is independent of the controller. Following
Appendix A.9, it is possible to construct an optimal gain Z(ρ) from the existence condition
obtained using the projection lemma. It is important to notice that the the optimal gain in
non-unique according to Appendix A.9. However, the resulting controller may depend on the
derivative of the parameters making the observer non-implementable in practice.

Finally, the analysis of the detectability of the system for given structure of P (ρ) and Z(ρ)
is a difficult problem due to the time-varying nature of the parameters and the delay. Hence,
no criteria as rank conditions are allowed in this case.

To conclude on this remark, a rigorous analysis of the choice of the structure of Z(ρ) or
the impact of the choice of Z(ρ) on the existence of the controller is a very difficult problem in
the case of LPV time-delay systems with time-varying delays. The development of the solution
of such a problem needs new technical tools which are, to my best knowledge, unavailable at
this time.

This section ends with the following example.

Example 4.1.7 Let us consider the system proposed in [Mohammadpour and Grigoriadis,
2007a] with D21 = 0 which is the transfer from w to y:

ẋ =
[

0 1 + 0.2ρ
−2 −3 + 0.1ρ

]
x(t) +

[
0.2ρ 0.1

−0.2 + 0.1ρ −0.3

]
xh(t) +

[
−0.2
−0.2

]
w(t)

y(t) =
[

0 1
0.5 0

]
x(t)

z(t) = x(t)

(4.49)

The matrices Z(ρ) and P (ρ) are chosen to be polynomial of degree 2. For simulation
purpose, the delay is assumed to be constant and set to h = 0.5 < hmax = 0.8. A step
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Figure 4.1: Evolution of the observation errors

disturbance w(t) of magnitude 10 is applied on the system at time t = 15s and the parameter
trajectory is given by ρ(t) = sin(t). Applying Theorem 4.1.5, we compute an observer for
which we have ||e||L2 ≤ 0.01||w||L2. Figure 4.1.7 shows the evolution of the observation
errors.

We can see that the errors converge to 0 and remains close to even in presence of a
disturbance.

Since heavy symbolic computation are necessary to compute such an observer (e.g. pseudo-
inverse of parameter dependent matrices. . . ) the solutions for matrices are rational functions
with high degrees but by analyzing the zeroes and the poles of each coefficient, it appears that
several pairs of zeroes/poles are very near. Hence using a least mean square approximation
of these polynomial coefficients we get the following observer matrices (energy error between
initial and approximants) less than 10−6):

M0(ρ) =
[
−0.836ρ2 − 0.836ρ− 0.667 −0.078ρ2 − 0.072ρ+ 0.1345
−0.0376ρ2 − 0.0376ρ− 0.361 −0.396ρ2 − 0.406ρ− 0.800

]

Mh(ρ) =
[
−0.009ρ2 − 0.0002ρ+ 0.00822 −0.007ρ2 − 0.0071ρ+ 0.014
0.016ρ2 − 0.00001ρ− 0.0162 0.0134ρ2 + 0.0134ρ− 0.27

]

N0(ρ) =
[
−0.073ρ2 − 0.063ρ+ 0.326 0.146ρ2 + 0.148ρ+ 0.620
0.076ρ2 + 0.058ρ− 0.684 −0.152ρ2 − 0.156ρ− 1.054

]

Nh(ρ) =
[

0.001ρ2 + 0.001ρ+ 0.040 −0.001ρ2 + 0.019ρ+ 0.046
−0.001ρ2 − 0.27ρ− 0.077 0.002ρ2 − 0.035ρ− 0.088

]

H =
[

0.106 1.788
0.798 0.404

]

As a conclusion of the approach, observers designed with this approach lead to interesting
results due to their good performances. As the model of the system is exact such observers
can be designed on unstable systems and the delay-margin of the observation error can be
larger than the delay-margin of the system. However, such properties are not of interest since
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in practice the system is not known exactly: uncertainties on the delay and on the coefficient
of the system are generally encountered. These problems are (partially) answered in the
following sections.

4.1.2 Observer with approximate delay value

From the dynamical equations of the observer, it is clear that the exact knowledge of the delay
is a crucial condition to the design of the observer of the latter sections. However, estimating
or measuring the delay in real time is a challenging open problem [Belkoura et al., 2007, 2008,
Drakunov et al., 2006] and the delay is known with infinite precision. Therefore, it seems
convenient to consider the case where the delay is approximately known and the design of an
observer with approximate delay value is exposed in what follows.

The considered observer is given by:

ξ̇(t) = M0(ρ)ξ(t) +Mh(ρ)ξ(t− d(t)) +N0(ρ)y(t) +Nh(ρ)y(t− d(t))
ẑ(t) = ξ(t) +Hy(t)

(4.50)

where d(t) is the delay implemented in the observer. The idea is to impose a relationship
between the real and implemented delays:

d(t) = h(t) + ε(t)

where ε(t) denotes a bounded error (ε(t) ∈ [−δ, δ]).
Whenever the delays are locally equal (in time), then the error dynamical model is identical

to (4.13). On the other hand, if the delays are different then we have the following extended
model:
[
ẋ(t)
ė(t)

]
= A(ρ)

[
x(t)
e(t)

]
+Ah(ρ)

[
x(t− h(t))
e(t− h(t))

]
+Ad(ρ)

[
x(t− d(t))
e(t− d(t))

]
+ E(ρ)w(t)

A(ρ) =
[

A(ρ) 0
(T −HC)A(ρ)−N0(ρ)C −M0(ρ)(T −HC) M0(ρ)

]

Ah(ρ) =
[

Ah(ρ) 0
(T −HC)Ah(ρ) 0

]

Ad(ρ) =
[

0 0
−Mh(ρ)(T −HC)−Nh(ρ)C Mh(ρ)

]

E(ρ) =
[

E(ρ)
(T −HC)E(ρ)

]

(4.51)
where we have assumed without loss of generality that the control input is 0 (i.e. u(t) ≡ 0)
since the solution S(ρ) of the observer gain is trivial.

From this model, it is obvious that only asymptotically stable systems can be observed in
such a framework since the delayed state of the system enters in the observer model and cannot
be removed by vanishing the coefficient. Indeed, if the system is unstable then x(t) → +∞
as t→ +∞ and thus e(t)→ +∞ as t→ +∞. On the second hand, the observer will not be
able in this case to observe uniformly z since the delayed states of the system x(t− d(t)) and
x(t− h(t)) affect the observation error e.

Conditions of lemmas 4.1.3 and 4.1.4 are supposed to be fulfilled in this case and we have

(T −HC)A(ρ)−N0(ρ)C −M0(ρ)(T −HC) = 0
(T −HC)Ah(ρ)−Mh(ρ)(T −HC)−Nh(ρ)C = 0
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Then matrices A(ρ) and Ad(ρ) in model (4.51) can be rewritten as

A(ρ) =
[
A(ρ) 0

0 M0(ρ)

]

Ad(ρ) =
[

0 0
−(T −HC)Ah(ρ) Mh(ρ)

] (4.52)

Similarly as for the latter section of observer, it is possible to provide nonconstructive
necessary and sufficient conditions taking the form of the following theorem:

Theorem 4.1.8 There exists an LPV/H∞ observer with memory of the form (4.50) for
system of the form (4.3) if and only if the following statements hold:

1. The autonomous error dynamical expression η̇(t) = A(ρ)η(t) + Ah(ρ)e(t − h(t)) +
Ad(ρ)η(t − d(t)) is asymptotically stable where η(t) = col(x(t), e(t)) with e(t) = z(t) −
ẑ(t), d(t) = h(t) + ε(t), |ε(t)| ≤ δ and h ∈H ◦

1 .

2. (T −HC)A(ρ)x(t)−N0(ρ)C −M0(ρ)(T −HC) = 0

3. (T −HC)Ah(ρ)x(t− h(t))−NhC −Mh(ρ)(T −HC) = 0

4. The inequality ||e||L2 ≤ γ||w||L2 holds for some γ > 0

Due to the form of the dynamical model of the observation error, we can easily recognize
that the general structure considered in Section 3.7 where the problem of the stability of
system with two correlated delays is addressed.

Theorem 4.1.9 There exists a parameter dependent observer of the form (4.50) such that
theorem 4.1.8 holds for all h ∈ H ◦

1 , d(t) = h(t) + ε(t) with ε(t) ∈ [−δ, δ] is satisfied if
there exist a continuously differentiable matrix function P : Uρ → Sr++, a matrix function
Z : Uρ → Rr×(2r+3m), constant matrices Qi, Ri ∈ Sr+n++ , i = 1, 2, X1 ∈ Rn×n, X2 ∈ Rn×r,
X3 ∈ Rr×r, H̄ ∈ Rr×m and a positive scalar γ > 0 such that the following LMIs




−XH P (ρ) + Ã(ρ) Ãd(ρ) + Ãh(ρ) Ē(ρ) 0 XT hmaxR1 R2

? Θ11(ρ, ν) R1 0 IT 0 0 0
? ? Θ22 0 0 0 0 0
? ? ? −γI 0 0 0 0
? ? ? ? −γI 0 0 0
? ? ? ? ? −P (ρ) −hmaxR1 −R2

? ? ? ? ? ? −R1 0

? ? ? ? ? ? ? −R2

2δ




≺ 0

(4.53)
and [

Π11(ρ, ν) Π12(ρ)
? Π22(ρ)

]
≺ 0 (4.54)
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hold for all (ρ, ν) ∈ Uρ × Uν and where

Π11(ρ, ν) =




−XH P (ρ) + Ã(ρ) Ãh(ρ) Ãd(ρ) Ē(ρ)
? Θ11(ρ, ν) R1 0 0
? ? Ψ22 (1− µ)R2/δ 0
? ? ? Ψ33 0
? ? ? ? −γI




Π12(ρ) =




0 XT hmaxR1 R2

IT 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Π22(ρ) =




−γI 0 0 0
? −P (ρ) −hmaxR1 −R2

? ? −R1 0

? ? ? −R2

2δ




X =
[
X1 0
X2 X3

]

Θ11(ρ, ν) = −P (ρ) +Q1 +Q2 +
N∑

i=1

∂P

∂ρi
(ρ)νi −R1

Θ22 = −(1− µ)(Q1 +Q2)−R1

Ψ22 = −(1− µ)(Q1 +R2/δ)−R1

Ψ33 = −(1− µc)Q2 − (1− µ)R2/δ

I =
[

0 Ir
]

L̄(ρ) = (XT
3 Φ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+)

Ã(ρ) =
[
XT

1 A(ρ) 0
XT

2 A(ρ) XT
3 Θ(ρ)− L̄(ρ)Ξ(ρ)

]

Ãh(ρ) =
[

XT
1 Ah(ρ) 0

XT
2 Ah(ρ) +XT

3 (T − Φ(ρ)C)Ah(ρ) + L̄(ρ)Ψ(ρ)CAh(ρ) 0

]

Ãd(ρ) =
[

0 0
−XT

3 (T − Φ(ρ)C)− L̄(ρ)Ψ(ρ)C XT
3 Υ(ρ)− L̄(ρ)Ω(ρ)

]

Ē(ρ) =
[

XT
1 E(ρ)T

(XT
2 T − H̄C)E(ρ)T

]

Moreover, the gain is given by L(ρ) = X−T3 L̄(ρ) and we have ||e||L2 < γ||w||L2

Proof : Let us consider LMIs (3.140) and (3.141) of lemma 3.7.1. Let us define the
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matrices

Ã(ρ) = XTA(ρ) =
[
XT

1 A(ρ) 0
XT

2 A(ρ) XT
3 Θ(ρ)− L̄(ρ)Ξ(ρ)

]

Ãh(ρ) = XTAh(ρ) =
[

XT
1 Ah(ρ) 0

XT
2 Ah(ρ) +XT

3 (T − Φ(ρ)C)Ah(ρ) + L̄(ρ)Ψ(ρ)CAh(ρ) 0

]

Ãd(ρ) = XTAd(ρ) =
[

0 0
−XT

3 (T − Φ(ρ)C)− L̄(ρ)Ψ(ρ)C XT
3 Υ(ρ)− L̄(ρ)Ω(ρ)

]

Ẽ(ρ) = XTE(ρ) =
[

XT
1 E(ρ)

XT
2 E(ρ) +XT

3 (T − Φ(ρ)C) + L̄(ρ)Ψ(ρ)C

]

Now substituting these expressions in the LMIs (3.140) and (3.141) of lemma 3.7.1 we get
LMIs (4.53) and (4.54). Since the matrix H has to be chosen independent of the parameter
ρ it suffices to parametrize L̄ by Z(ρ) as

L̄(ρ) = (XT
3 Φ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+)

for some Z(ρ) of appropriate dimensions. Now denoting Ē(ρ) =
[

XT
1 E(ρ)T

(XT
2 T − H̄C)E(ρ)T

]

concludes the proof. �

4.1.3 Memoryless Observer

As a final design technique, we consider here the case where the delay cannot or is not known
and therefore no information on the delay can be used in the observer. This motivates the
choice of the following observer:

ξ̇(t) = M(ρ)ξ(t) +N(ρ)y(t)
ẑ(t) = ξ(t) +Hy(t)

(4.55)

In this case the extended system containing both the dynamical model of the system and
the observer is then given by

[
ẋ(t)
ė(t)

]
= A(ρ)

[
x(t)
e(t)

]
+Ah(ρ)

[
x(t− h(t))
e(t− h(t))

]
+ E(ρ)w(t)

A(ρ) =
[

A(ρ) 0
(T −HC)A(ρ)−M(ρ)(T −HC)−N(ρ)C M(ρ)

]

Ah(ρ) =
[

Ah(ρ) 0
(T (HC)Ah(ρ) 0

]

E(ρ) =
[

E(ρ)
(T −HC)E(ρ)

]

(4.56)

From this expression, it is possible to provide the following theorem:

Theorem 4.1.10 There exists an LPV/H∞ observer with memory of the form (4.55) for
system of the form (4.1) if and only if the following statements hold:

1. The unforced extended dynamical system ζ̇(t) = A(ρ)(ρ)ζ(t) + A(ρ)h(ρ)ζ(t − h(t)) is
asymptotically stable where ζ(t) = col(x(t), e(t)) and e(t) = z(t)− ẑ(t)
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2. (T −HC)A(ρ)−M(ρ)(T −HC)−N(ρ)C = 0

3. The inequality ||e||L2 ≤ γ||w||L2 holds for some γ > 0

The next results are the memoryless counterparts of Lemmas 4.1.3 and 4.1.4 dealing with
observers with memory.

Lemma 4.1.11 There exists a solution M(ρ), N(ρ), H to the equation of statement 2 if and
only if the following rank equality holds

rank




T
C

CA(ρ)
TA(ρ)


 = rank




T
C

CA(ρ)


 (4.57)

Proof : The proof is similar as for lemma 4.1.3. �
In the case when lemma 4.1.11 is verified then it is possible to find matrices M(ρ) and

N(ρ) such that equation of theorem 4.1.10, statement 2 is verified.

Lemma 4.1.12 Under condition of Lemma 4.1.11, the observer matrices are parametrized
with respect to a free matrix L(ρ) according to the following expressions

M(ρ) = Θ(ρ)− L(ρ)Ξ(ρ)
H = Φ(ρ)− L(ρ)Ω(ρ)

Θ(ρ) = TA(ρ)U − Λ(ρ)Γ(ρ)+∆M

[
C

CA(ρ)

]
U

Ξ(ρ) = −(I − Γ(ρ)Γ(ρ)+)∆M

[
C

CA(ρ)

]
U

Φ(ρ) = Λ(ρ)Γ(ρ)+∆H

Ψ(ρ) = −(I − Γ(ρ)Γ(ρ)+)∆H

S(ρ) = (T −HC)B(ρ)
N(ρ) = K(ρ) +M(ρ)H
K(ρ) = [Λ(ρ)Γ(ρ)+ + L(ρ)s(I − Γ(ρ)Γ(ρ)+)] ∆K

and

∆M =



I
0
0


 ∆K =




0
I
0


 ∆H =




0
0
I




Proof : The proof is similar as for lemma 4.1.4 �



4.1. OBSERVATION OF UNPERTURBED LPV TIME-DELAY SYSTEMS 181

Whenever lemma 4.1.11 is satisfied and according to matrix definitions of lemma 4.1.12,
system (4.56) rewrites

[
ẋ(t)
ė(t)

]
= A(ρ)

[
x(t)
e(t)

]
+Ah(ρ)Z

[
x(t− h(t))
e(t− h(t))

]
+ B(ρ)u(t) + E(ρ)w(t)

A(ρ) =
[
A(ρ) 0

0 Θ(ρ)− L(ρ)Ξ(ρ)

]

Ah(ρ) =
[

Ah(ρ)
[T − Φ(ρ)C + L(ρ)Ω(ρ)C]Ah(ρ)

]

B(ρ) =
[
B(ρ)

0

]

E(ρ) =
[

E(ρ)
[T − Φ(ρ)C + L(ρ)Ω(ρ)]E(ρ)

]

Y =
[
In 0

]

(4.58)

Finally we have the following theorem:

Theorem 4.1.13 There exists a parameter dependent observer of the form (4.55) such that
theorem 4.1.10 for all h ∈ H ◦

1 is satisfied if there exist a continuously differentiable matrix
function P : Uρ → Sr++, a matrix function Z : Uρ → Rr×(2r+3m), constant matrices Q,R ∈
Sr+n++ , X1 ∈ Rn×n, X2 ∈ Rn×r, X3 ∈ Rr×r, H̄ ∈ Rr×m and a positive scalar γ > 0 such that
the following LMI




−XH P (ρ) +XT Ã(ρ) XT Ãh(ρ) XT Ẽ(ρ) 0 XT hmaxY
TR

? Ψ′22(ρ, ν) R 0 IT 0 0
? ? −(1− µ)Q−R 0 0 0 0
? ? ? −γIm 0 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxY TR
? ? ? ? ? ? −R




≺ 0

(4.59)
holds for all (ρ, ν) ∈ Uρ × Uν where

Ψ′22(ρ, ν) =
∂

∂ρ
P (ρ)ν − P (ρ) + Y T (Q−R)Y

X =
[
X1 X2

0 X3

]

Y =
[
In 0

]

I =
[

0 Ir
]

L̄(ρ) = (XT
3 Φ(ρ)− H̄)Ψ(ρ)+ + Z(I −Ψ(ρ)Ψ(ρ)+)

Moreover the generalized observer gain L(ρ) is given by the relation L(ρ) = X−T3 L̄(ρ) and we
have ||e||L2 < γ||w||L2.

Proof : Due to the structure of Ah(ρ) it is clear that such a problem falls into the framework
of Section 3.5.3 which considers the stability of time-delay systems in which the delay acts on
only a specific subpart of the system state (i.e. the state of the system and not the state of
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the observer in this case). Hence injecting the extended system into LMI (3.109) we get with




−XH P (ρ) +XTA(ρ) XTAh(ρ) XTE(ρ) 0 XT hmaxY
TR

? Ψ′22(ρ, ν) R 0 IT 0 0
? ? −(1− µ)Q−R 0 0 0 0
? ? ? −γIm 0 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxY TR
? ? ? ? ? ? −R




≺ 0

(4.60)
with

Ψ′22(ρ, ν) = ∂ρP (ρ)ν − P (ρ) + Y T (Q−R)Y
R ∈ Sn++

Z =
[
In 0

]

I =
[

0 Ir
]

Choosing X =
[
X1 X2

0 X3

]
then we have the following relations:

Expanding the relations we get

Ã(ρ) = XTA(ρ) =
[
XT

1 A(ρ) 0
XT

2 A(ρ) XT
3 Θ(ρ)− L̄(ρ)Ξ(ρ)

]

Ãh(ρ) = XTAh(ρ) =
[

XT
1 Ah(ρ)

XT
2 Ah(ρ) +XT

3 (T − Φ(ρ)C) + L̄(ρ)Ω(ρ)CAh(ρ)

]

Ẽ(ρ) = XTE(ρ) =
[

XT
1 E(ρ)

XT
2 E(ρ) +XT

3 (T − Φ(ρ)C) + L̄(ρ)Ω(ρ)E(ρ)

]

where L̄(ρ) = XT
3 L(ρ).

An interesting fact of such a Lyapunov-Krasovskii functional of the form (3.79) is the
embedding of an information on the structure of the system (the delay does not act on some
part of the state) and allows to reduce the number of decision variables.

Finally, since a constant H matrix is sought (as in proof of theorem 4.1.5, then by choosing
L̄ such that

L̄(ρ) = (XT
3 Φ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+)

where Z(ρ) is a free matrix with appropriate dimension and H̄ = XT
3 H. This completes the

proof. �

4.2 Filtering of uncertain LPV Time-Delay Systems

This section is devoted to the filtering of LPV time-delay systems, where we are interested in
finding a LPV filter of the form

ẋF (t) = AF (ρ)x(t) +AFh(ρ)x(t− d(t)) +BF (ρ)y(t)
zF (t) = CF (ρ)x(t) + CFh(ρ)x(t− d(t)) +DF (ρ)y(t)

(4.61)
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for systems of the form

ẋ(t) = (A(ρ) + ∆A(ρ, t))x(t) + (Ah(ρ) + ∆Ah(ρ, t))x(t) + (E(ρ) + ∆E(ρ, t))w(t)
z(t) = (C(ρ)x(t) + ∆C(ρ, t))x(t) + (Ch(ρ)x(t) + ∆Ch(ρ, t))x(t− h(t))

+(F (ρ)x(t) + ∆F (ρ, t))w(t)
y(t) = (Cy(ρ)x(t) + ∆Cy(ρ, t))x(t) + (Cyh(ρ)x(t) + ∆Cyh(ρ, t))x(t− h(t))

+(Fy(ρ)x(t) + ∆Fy(ρ, t))w(t)
(4.62)

where x ∈ Rn, xF ∈ Rr, w ∈ Rm, y ∈ Rp, z, zF ∈ Rt are respectively the system state, the
filter state, the system measurements, the system exogenous inputs, the signal to be estimated
and its estimate. The time-varying delay h(t) is assumed to belong to the set H ◦

1 and the filter
delay d(t) is unconstrained at this time. When r < n the filter is said to be a reduced-order
filter while if r = n it is a full-order filter. We will consider in the following only full-order
filters (i.e. r = n). It is possible to generalize the results to the case of reduced-order filters
by considering, for instance, the approach of [Tuan et al., 2001].

The uncertain terms are assumed to obey




∆A(ρ, t)) ∆Ah(ρ, t)) ∆E(ρ, t))
∆C(ρ, t)) ∆Ch(ρ, t)) ∆F (ρ, t))
∆Cy(ρ, t)) ∆Cyh(ρ, t)) ∆Fy(ρ, t))


 =



Gx(ρ)
Gz(ρ)
Gy(ρ)


∆(t)

[
Hx(ρ) Hxh(ρ) Hw(ρ)

]

(4.63)
where all matrices are of appropriate dimensions provided that the uncertain terms are all
defined.

4.2.1 Design of robust filters with exact delay-value - simple
Lyapunov-Krasovskii functional

This section is devoted to the design of filter with exact delay-value (i.e. d(t) = h(t) for all
t ≥ 0). Even if such a filter are difficult to realize they allow to give a lower bound on the best
achievable H∞ norm. Indeed, since such filters can be considered as full-information filters
using any other filters, it is not possible to reach better performances.

In this case, the extended system describing the evolution of the system and the filter is
given by

[
ẋ(t)
ẋF (t)

]
= (A(ρ) + ∆A(ρ, t))

[
x(t)
xF (t)

]
+ (Ah(ρ) + ∆Ah(ρ, t))

[
x(t− h(t))
xF (t− h(t))

]

+(E(ρ) + ∆E(ρ, t))w(t)
e(t) = z(t)− zF (t)

= (C(ρ) + ∆C(ρ, t))
[

x(t)
xF (t)

]
+ (Ch(ρ) + ∆Ch(ρ, t))

[
x(t− h(t))
xF (t− h(t))

]

+(F(ρ) + ∆F(ρ, t))w(t)
(4.64)
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where

A(ρ) =
[

A(ρ) 0
BF (ρ)Cy(ρ) AF (ρ)

]

∆A(ρ, t) =
[

∆A(ρ, t) 0
BF (ρ)∆Cy(ρ, t) 0

]
=
[

Gx(ρ)
BF (ρ)Gy(ρ)

]
∆(t)

[
Hx(ρ) 0

]

Ah(ρ) =
[

Ah(ρ) 0
BF (ρ)Cyh(ρ) AFh(ρ)

]

∆Ah(ρ, t) =
[

∆Ah(ρ, t) 0
BF (ρ)∆Cyh(ρ, t) 0

]
=
[

Gx(ρ)
BF (ρ)Gy(ρ)

]
∆(t)

[
Hxh(ρ) 0

]

E(ρ) =
[

E(ρ)
BF (ρ)Fy(ρ)

]

∆E(ρ, t) =
[

∆E(ρ, t) 0
BF (ρ)∆E(ρ, t) 0

]
=
[

Gx(ρ)
BF (ρ)Gy(ρ)

]
∆(t)Hw(ρ)

C(ρ) =
[
C(ρ)−DF (ρ)Cy(ρ) −CF (ρ)

]

∆C(ρ, t) =
[

∆C(ρ, t)−DF (ρ)∆Cy(ρ, t) 0
]

= (Gz(ρ)−DF (ρ)Gy(ρ))∆(t)
[
Hx(ρ) 0

]

Ch(ρ) =
[
Ch(ρ)−DF (ρ)Cyh(ρ) −CFh(ρ)

]

∆Ch(ρ, t) =
[

∆Ch(ρ, t)−DF (ρ)∆Cyh(ρ, t) 0
]

= (Gz(ρ)−DF (ρ)Gy(ρ))∆(t)
[
Hxh(ρ) 0

]

F(ρ) = F (ρ)−DF (ρ)Fy(ρ)
∆F(ρ, t) = ∆F (ρ)−DF (ρ)∆Fy(ρ) = (Gz(ρ)−DF (ρ)Gy(ρ))∆(t)Hw(ρ)

This leads to the following theorem which an application of the relaxation theorem of the
simple Lyapunov-Krasovskii developed in Section 3.5.

Theorem 4.2.1 There exists a full-order filter of the form (4.61) with d(t) = h(t), h(t) ∈H ◦
1

if there exists a continuously differentiable matrix function P̃ : Uρ → S2n
++, symmetric matrices

Q̃, R̃ ∈ S2n
++, X̂ ∈ R2n×2n, matrix functions ÃF , ÃFh : Uρ → Rn×n, B̃F : Uρ → Rn×m,

C̃F , C̃Fh : Uρ → Rt×n, D̃F : Uρ → Rn×m and scalars γ, ε > 0 such that the LMI

[
Ψ(ρ, ν) + εH(ρ)TH(ρ) G̃(ρ)T

? −εI

]
≺ 0 (4.65)
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holds for all ρ ∈ Uρ with

Ψ(ρ, ν) =




−X̂H P̃ (ρ) + Ã(ρ) Ãh(ρ) Ẽ(ρ) 0 X̂T hmaxR̃

? Ψ̃22(ρ, ν) R 0 C̃(ρ)T 0 0
? ? −(1− µ)Q̃− R̃ 0 C̃h(ρ)T 0 0
? ? ? −γIq F(ρ)T 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃




Ψ22(ρ, ν) = ∂ρP̃ (ρ)ν − P̃ (ρ) + Q̃− R̃
P̃ (ρ) = X̃TP (ρ)X̃
Q̃ = X̃TQX̃

R̃ = X̃TRX̃

X̂ =
[
X̂1 X̂2

X̂3 X̂3

]

Ã(ρ) =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) =
[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)

]

Ẽ(ρ) =



X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)




C̃(ρ)T =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]

C̃h(ρ)T =
[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

−C̃Fh(ρ)

]

X̂2 = X2X
−1
4 X3 = UTΣV (SVD)

H(ρ)T =




0
0

Hx(ρ)T

0
Hxh(ρ)T

0
Hw(ρ)T

0
0
0
0
0




G̃(ρ)T =




X̂T
1 Gx(ρ) + B̃F (ρ)Gy(ρ)
X̂TGx + B̃F (ρ)Gy(ρ)

0
0
0
0
0

Gz(ρ)−DF (ρ)Gy(ρ)
0
0
0
0




Moreover the filter matrices are computed using
[
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)U−1Σ−1 U−T ÃFh(ρ)U−1Σ−1 U−T B̃F (ρ)
C̃F (ρ)U−1Σ−1 C̃Fh(ρ)U−1Σ−1 D̃F (ρ)

]

where X̂3 = UΣV and we have ||e||L2 ≤ γ||w||L2.
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Proof : Substitute the model (4.64) into LMI (3.95) we get



−XH P (ρ) +XT Ā(ρ) XT Āh(ρ) XT Ē(ρ) 0 XT hmaxR
? Ψ22(ρ, ν) R 0 C̄(ρ)T 0 0
? ? −(1− µ)Q−R 0 C̄h(ρ)T 0 0
? ? ? −γIq F̄ (ρ)T 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R




≺ 0

(4.66)
with

Ψ22(ρ, ν) = ∂ρP (ρ)ν − P (ρ) +Q−R
Ā(ρ) = A(ρ) + ∆A(ρ)
Āh(ρ) = Ah(ρ) + ∆Ah(ρ)
Ē(ρ) = E(ρ) + ∆E(ρ)
C̄(ρ) = C(ρ) + ∆C(ρ)
C̄h(ρ) = Ch(ρ) + ∆Ch(ρ)
F̄ (ρ) = F(ρ) + ∆F(ρ)

The latter inequality can be rewritten in the following form

M(ρ, ν) +DTG(ρ)T∆(t)H(ρ) +H(ρ)T∆(t)TG(ρ)D ≺ 0

where

D = diag(X, I, . . . , I)

M(ρ, ν) =




−XH P (ρ) +XTA(ρ) XTAh(ρ) XTE(ρ) 0 XT hmaxR
? Ψ22(ρ, ν) R 0 C(ρ)T 0 0
? ? −(1− µ)Q−R 0 Ch(ρ)T 0 0
? ? ? −γIq F(ρ)T 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R




H(ρ)T =




0
0

Hx(ρ)T

0
Hxh(ρ)T

0
Hw(ρ)T

0
0
0
0
0




G(ρ)T =




Gx(ρ)
BF (ρ)Gy(ρ)

0
0
0
0
0

Gz(ρ)−DF (ρ)Gy(ρ)
0
0
0
0



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Then invoking the bounding lemma (see Appendix E.14), we get the following equivalent matrix
inequality

[
M(ρ, ν) + εH(ρ)TH(ρ) G(ρ)T

? −εI

]
≺ 0 (4.67)

where ε > 0 is unknown variable to be designed. Since the latter matrix inequality is nonlinear,
it cannot be solved efficiently in a reasonable time. The remaining of the proof is devoted to
the linearization of such an inequality.

Let us define the matrix X̃ =
[
In 0
0 X−1

4 X3

]
then we have

Ã(ρ) = X̃TXTA(ρ)X̃ =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) = X̃TXTAh(ρ)X̃ =
[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)

]

Ẽ(ρ) = X̃TXTE(ρ)X̃ =
[
X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)

]

C̃(ρ)T = X̃TC(ρ) =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]

C̃h(ρ)T = X̃TCh(ρ) =
[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

−C̃Fh(ρ)

]

G̃1(ρ) = X̃TXT

[
Gx(ρ)

BF (ρ)Gy(ρ)

]
=

[
X̂T

1 Gx(ρ) + B̃F (ρ)Gy(ρ)
X̂TGx + B̃F (ρ)Gy(ρ)

]

X̂ = X̃TXX̃ =
[
X̂1 X̂2

X̂3 X̂3

]
=
[

X1 X2X
−1
4 X3

XT
3 X

−1
4 X3 XT

3 X
−1
4 X3

]

ÃF (ρ) = XT
3 AF (ρ)X−1

4 X3

ÃFh(ρ) = XT
3 AFh(ρ)X−1

4 X3

B̃F (ρ) = XT
3 BF (ρ)

C̃F (ρ) = CF (ρ)X−1
4 X3

C̃Fh(ρ) = CFh(ρ)X−1
4 X3

Then perform a congruence transformation on (4.67) with respect to diag(X̃, X̃, X̃, Iq, Ir, X̃, X̃, I)
we get LMI (4.65). Now let us focus on the computation of the filter matrices. Note that

[
ÃF (ρ) ÃFh(ρ) B̃F (ρ)
C̃F (ρ) C̃Fh(ρ) D̃F (ρ)

]
=
[
XT

3 0
0 I

] [
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]

X−1

4 X3 0 0
0 X−1

4 X3 0
0 0 I




(4.68)
Thus it suffices to construct back the matrix X in order to compute the observer gain. A
singular values decomposition (SVD, see Appendix A.6) on X̂3 allows to compute the matrices
X3 and X4 which are necessary to construct the filter matrices. Indeed, we have X̂2 = UTΣV
and hence

X2 = UT

X4 = Σ−1

X3 = V
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and finally we have

[
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
V T 0
0 I

]−1 [
ÃF (ρ) ÃFh(ρ) B̃F (ρ)
C̃F (ρ) C̃Fh(ρ) D̃F (ρ)

]


ΣV 0 0
0 ΣV 0
0 0 I



−1

=
[
U−T ÃF (ρ)V −1Σ−1 U−T ÃFh(ρ)V −1Σ−1 U−T B̃F (ρ)
C̃F (ρ)V −1Σ−1 C̃Fh(ρ)V −1Σ−1 D̃F (ρ)

]

�

4.2.2 Design of robust memoryless filters

This last section is devoted to the synthesis of robust memoryless filters. The resulting syn-
thesis condition are based on the application of the reduced Lyapunov-Krasovskii functional
introduced in Section ?? which applies on system where the delay acts only on a subpart of
the state. In this case, only the state of the system is affected by the delay.

Theorem 4.2.2 There exists a full-order filter of the form (4.61) with AFh = 0 and CFh = 0
with h(t) ∈ H ◦

1 if there exists a continuously differentiable matrix function P̃ : Uρ → S2n
++,

symmetric matrices Q̃, R̃ ∈ S2n
++, X̂ ∈ R2n×2n, matrix functions ÃF : Uρ → Rn×n, B̃F : Uρ →

Rn×m, C̃F : Uρ → Rt×n, D̃F : Uρ → Rn×m and scalars γ, ε > 0 such that the LMI
[

Ψ(ρ, ν) + εH(ρ)TH(ρ) G(ρ)T

? −εI

]
≺ 0 (4.69)

holds for all (ρ, ν) ∈ Uρ × Uν where

Ψ(ρ, ν) =




−X̂H P̃ (ρ) + Ã(ρ) Ãh(ρ) Ẽ(ρ) 0 X̂T hmaxZ
TR

? Ψ̃′22(ρ, ν) R 0 C̃(ρ)T 0 0
? ? −(1− µ)Q−R 0 C̃h(ρ)T 0 0
? ? ? −γIm F(ρ)T 0 0
? ? ? ? −γIp 0 0
? ? ? ? ? −P̃ (ρ) −hmaxZTR
? ? ? ? ? ? −R




Ψ̃′22(ρ, ν) = ∂ρP̃ (ρ)ν − P̃ (ρ) + ZT (Q(ρ)−R)Z

X̂ =
[
X̂1 X̂2

X̂3 X̂3

]

Ã(ρ) =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) =
[
X̂T

1 Ah + B̃F (ρ)Cyh(ρ)
X̂T

2 Ah + B̃F (ρ)Cyh(ρ)

]

Ẽ(ρ) =



X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)




C̃(ρ)T =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]

C̃h(ρ)T = Ch(ρ)T − Chy(ρ)TDF (ρ)T

X̂3 = X2X
−1
4 X3 = UTΣV (SVD)
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H(ρ)T =




0
0

Hx(ρ)T

0
Hxh(ρ)
Hw(ρ)T

0
0
0
0




G(ρ)T =




X̂T
1 Gx(ρ) + B̃F (ρ)Gy(ρ)
X̂TGx + B̃F (ρ)Gy(ρ)

0
0
0
0

Gz(ρ)− D̃F (ρ)Gy(ρ)
0
0
0




Moreover the filter matrices are computed using
[
AF (ρ) BF (ρ)
CF (ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)V −1Σ−1 U−T B̃F (ρ)
C̃F (ρ)V −1Σ−1 D̃F (ρ)

]

and we have ||e||L2 ≤ γ||w||L2.

4.2.3 Example

We will show the effectiveness of the approach compared to existing ones through the following
example. Let us consider the following system Mohammadpour and Grigoriadis [2007a]:

ẋ =
[

0 1 + 0.2ρ
−2 −3 + 0.1ρ

]
x+

[
0.2ρ 0.1

−0.2 + 0.1ρ −0.3

]
xh

+
[
−0.2
−0.2

]
w

z =
[

0.3 1.5
−0.45 0.75

]
x+

[
0.5ρ −0.5

]
w

y =
[

0 1
0.5 0

]
x+

[
0 1 + 0.1ρ

]
w

(4.70)

where ρ(t) = sin(t) ∈ [−1, 1] and ρ̇(t) ∈ [−1, 1].
All the parameter dependent matrices are expressed onto a basis formed by the functions

f0(ρ) = 1 f1(ρ) = ρ (4.71)

We use theorems 4.2.1 and 4.2.2 with an uniform gridding of 11 points over the whole
parameter space and the results are verified over a denser grid (around 100 points).

Results of Mohammadpour and Grigoriadis [2007a] are depicted in Figure 4.2. In figure
4.3, the evolution of the worst case performance for the delayed filter computed with Theorem
4.2.2 and the memoryless one computed with 4.2.1. As a first analysis, the delayed filter gives
better performance than the memoryless one which seems obvious since the information on
the delay is used in the delayed filter. As a comparison with the results in Mohammadpour
and Grigoriadis [2007a], our results are less conservative and then improves the existing ones
(see result of Mohammadpour and Grigoriadis [2007a] in figure 4.2 and proposed results in
figure 4.3). It is possible to see that for small delay values both solutions leads to very
similar results. The main difference appears for larger delay values for which the worst case
disturbance gain is drastically different.
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Figure 4.2: Evolution of the worst case L2 gain for the delayed filter (dashed) and the mem-
oryless filter (plain) in Mohammadpour and Grigoriadis [2007a]

Figure 4.3: Evolution of the worst case L2 gain for the delayed filter (dashed) and the mem-
oryless filter (plain)



4.3. CHAPTER CONCLUSION 191

Figure 4.4: Evolution of z(t)− zF (t) for the delayed filter (dashed) and the memoryless filter
(plain)

Figure 4.4 shows the evolution of the error z(t) − zF (t) for a delay h = 3 and a step
disturbance of amplitude 20. We can easily see that the delayed filter gives better results
than the memoryless one. Consider now system (4.70) with uncertainties defined by:

Gx = Gy = 0.1I2 Gz = 0 Hx = Hxh
= I2

Hw =
[

1
1

]
(4.72)

according to the notation (4.63). The evolution of the worst-case performance L2-gain is
depicted in figure 4.5.

Figure 4.6 shows the evolution of the error z(t) − zF (t) for a delay h = 4.5, ∆(t) =
sin(10t)I2 and a step disturbance of amplitude 20. The delayed filter achieves a L2 perfor-
mance gain of γdel = 0.59 and the memoryless of γml = 0.78.

4.3 Chapter Conclusion

This chapter has been devoted to the design of observer and filters for both unperturbed and
uncertain LPV time-delay systems.

Three types of observers have been synthesized: observers with memory, with both exact
and approximate delay value knowledge, and memoryless observers. They have been devel-
oped using an algebraic approach generalized from [Darouach, 2001] to the LPV framework.
The matrices of the observers are chosen such that the system state and the control input
do not affect the evolution of the observation error and that the disturbances are attenuated
in the L2 sense. The set of observers that decouple the error from the system state and the
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Figure 4.5: Evolution of the worst case L2 gain for the delayed filter (dashed) and the mem-
oryless filter (plain)

Figure 4.6: Evolution of z(t)− zF (t) for the delayed filter (dashed) and the memoryless filter
(plain)
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control input is parametrized through an algebraic equation involving a free parameter to be
chosen. This parameter is chosen as a solution of a LMI optimization problem where the L2

gain from the disturbances to the observation error is minimized. This approach is better
suited for certain systems since the matrices acting on the system state in the observation
error dynamical model can be set to zero by an appropriate choice of the observer matrices.
However, in the uncertain case, these matrices cannot be set to zero due to uncertain terms
and, inevitably, the observer has much lower performances. Such observers are developed in
Appendix J.

On the second hand, the problem of designing filters for uncertain systems has been
addressed in the second section of the chapter. Two types of filters have been considered:
memoryless filters and filters with memory (exact delay value knowledge). The design of filters
is more simple and direct than observer design, since it is not sought to obtain an estimation
error which is independent of the state variables of the system. The constructive existence
conditions are given in terms of a convex optimization problem involving LMIs where the L2

attenuation gain from the disturbances to the filtering error is minimized. Other filters are
developed in Appendix J.





Chapter 5

Control of LPV Time-Delay
Systems

T
his chapter is devoted to the control of (uncertain) LPV time-delay systems. Despite
of its apparent simplicity the control of LPV time-delay systems is still an open
problem. Indeed, in the LMI based approaches, conservatism induced by relaxations

(as bounding techniques, model transformations, relaxations of nonlinear terms. . . ) is a cause
for bad results. There exists a lot of approaches to the control of time-delay systems and a
great similarity is the relaxation of coupled terms. Coupled terms (e.g. KR, KP where
P,K,R are decision variables) arise very often in any design concerning time-delay systems
and prevent the linearization of BMIs into LMIs. For instance, in the descriptor approach
[Fridman, 2001], the coupled terms KP1 and KP2 (when considering a state-feedback control
law) must be relaxed and then the relaxation P2 = εP1 is usually performed where ε is an a
priori chosen scalar. This type of relaxation is also needed when the design is done using the
free-weighting approach [He et al., 2004]. Most of the approaches are done using the same
procedure as follows:

1. Elaborate a stability/performance test based on some method for the open-loop system

2. Substitute the closed-loop system

3. Linearize by congruence, relaxation and change of variable to obtain LMIs.

In this chapter we will propose another strategy by adding a step into this methodology:

1. Develop a stability/performances test for an open loop system

2. If the obtained conditions give rise to coupled terms then they are relaxed using for
instance the Finsler’s lemma (see Appendix E.16) in order to remove these coupled
terms.

3. Substitute the closed-loop system expression in the relaxed version of the stability/performances
LMI test.

4. Linearize immediately or by the use of congruence transformations.

It will be shown in this chapter that this methodology gives rise to good results, not only
for LTI systems but also for LPV system. Since the results for uncertain LTI systems are

195
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numerous compared to those for LPV systems, the methods will be compared with both LTI
and LPV methods.

It is worth mentioning that even if the relaxed version of the test without coupled terms is
not equivalent to the original test, the conservatism is generally not worse than with classical
relaxations and is a good point of our methods. Moreover, our relaxation allows for the use
of discretized versions of ’complete’ Lyapunov-Krasovskii functionals in the control design
framework by relaxing the high number of involved coupled-terms (actually the number of
coupled-terms is of close to the order of discretization).

A new approach for the control of time-delay systems with time-varying delays is developed
in this chapter. This method allows to find a memoryless controller where the gains of
the controller are smoothly scheduled by the delay value or an approximate one. Due to
the similarity with gain-scheduled controller synthesis in the LPV framework, this type of
controllers is referred to as ’delay-scheduled’ controllers. Such a controller is hence midway
between memoryless and with memory since it embeds an information on the delay value
with any delay terms in the control law expression.

Several of our results have been detailed in the following papers:

• [Briat et al., 2007a] a delay-scheduled state-feedback strategy is designed based on a
specific model transformation. In this paper, the computed controller is LPV depends
on the value of the delay in a LFT fashion. A paper version [Briat et al., 2007b] is still
under review at IEEE Transactions on Automatic Control (2nd round).

• [Briat et al., 2008b] an enhanced delay-scheduled controller approach is developed where
the model transformation has been improved and the controller is not in LFT form. The
results are then less conservative. A journal version is in revision at Systems and Control
Letters.

• A full-block S-procedure approach is provided in [Briat et al., 2008c] where the control
of uncertain time-delay systems is solved.

• LPV control for time-delay systems is detailed in [Briat et al., 2008d] where a projection
approach is used to provide constructive sufficient conditions for a stabilizing controller.

Some key references of modern control techniques for time-delay systems are recalled
below (see also Chapter 2):

Robust control of LTI time-delay systems: [Fu et al., 1998], [Souza and Li, 1999], [Ivanescu
et al., 2000], [Moon et al., 2001], [Fridman and Shaked, 2002a], [Wu, 2003], [Suplin et al.,
2004], [Jiang and Han, 2005], [Fridman, 2006a], [Suplin et al., 2006], [Fridman, 2006b],
[Fridman and Shaked, 2006], [Jiang and Han, 2006], [Xu et al., 2006], [Chen, 2007].

LPV control of LPV/LTI time-delay systems: [Wu and Grigoriadis, 2001], [Wu, 2001],
[Zhang and Grigoriadis, 2005]

The first section will be concerned to the synthesis of state-feedback control laws, both
memoryless and with memory state-feedback controllers will be explored. Moreover, the
uncertainty on the delay-knowledge using state-feedback with memory will be taken into
account through a specific Lyapunov-Krasovskii functional. Finally the synthesis of delayed-
scheduled state-feedback will be solved. The last section will be devoted to the synthesis of
dynamic output feedback controllers. Both observer-based and full-block controllers will be
synthesized and compared.
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5.1 State-Feedback Control laws

In this section the stabilization of general uncertain LPV time-delay systems of the form

ẋ(t) = (A(ρ) + ∆A(ρ, t))x(t) + (Ah(ρ) + ∆Ah(ρ, t))x(t− h(t))
+(B(ρ) + ∆B(ρ, t))u(t) + (E(ρ) + ∆E(ρ, t))w(t)

z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) +D(ρ)u(t) + F (ρ)w(t)
(5.1)

using control a control law of the form

u(t) = K(ρ)x(t) +Kh(ρ)x(t− d(t)) (5.2)

where x ∈ Rn, u ∈ Rm, w ∈ Rp, z ∈ Rq and h(t) ∈ H ◦
1 are respectively the state of the

system, the control input, the disturbances, the controlled outputs and the system delay. The
set H ◦

1 is given by
H ◦

1 :=
{
h ∈ C1(R+, [0, hmax]) : |ḣ| < µ

}
(5.3)

The controller delay d(t) = h(t)+ε(t), ε(t) ∈ [−δ, δ] is not defined a priori and may admit
fast variations. The uncertain terms are given as:
[

∆A(ρ) ∆Ah(ρ) ∆B(ρ) ∆E(ρ)
]

= G(ρ)∆(t)
[
HA(ρ) HAh

(ρ) HB(ρ) HE(ρ)
]

where matrices G(ρ), HA(ρ), HAh
(ρ), HB(ρ), HE(ρ) are full rank matrices and ∆(t)T∆(t) � I.

Whenever Kh(·) = 0, the controller is said to be memoryless while when Kh(·) 6= 0, it is said
to be with memory.

Problem 5.1.1 The problem is to find a control law of the form (5.2) which asymptotically
stabilizes system (5.1) for all h ∈ H ◦

1 and all ∆(t) such that ∆(t)T∆(t) � I and minimizes
γ > 0 such that

||z||L2 ≤ γ||w||L2

In the following the following main problems will be addressed:

1. The stabilization of the system by a memoryless state-feedback control law of the form
u(t) = K(ρ)x(t).

2. The stabilization of the system by a state-feedback control law with memory of the form
u(t) = K(ρ)x(t) +Kh(ρ)x(t− h(t)) with exact delay value.

3. The stabilization of the system by a state-feedback control law with memory of the form
u(t) = K(ρ)x(t) +Kh(ρ)x(t− h(t)) with approximate delay value.

4. The stabilization of the system using delay-scheduled controllers.

In this chapter, the following terminology will be used: by relaxed we mean that the initial
stability and performances test has been modified in order to remove all potential coupled
terms. The term simple means that the Lyapunov-Krasovskii functional is ’simple’ in the
sense that the structure of the functional involves constant matrices only. This term has to
be put in parallel with the term complete. Finally, the term discretized means that a complete
Lyapunov-Krasovskii functional involving function as decision variables has been discretized
in order to get tractable stability conditions (see [Gu et al., 2003]).
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5.1.1 Memoryless State-Feedback Design - Relaxed Simple
Lyapunov-Krasovskii functional

The most simple state-feedback controller that can be designed is the memoryless one (i.e.
Kh(·) = 0), where only the instantaneous state x(t) is used to compute the control input u(t).
In such a case, the closed-loop system is governed by

ẋ(t) = (A(ρ) + ∆A(ρ, t) + [B(ρ) + ∆B(ρ, t)]K(ρ))x(t)
+(Ah(ρ) + ∆Ah(ρ, t))x(t− h(t)) + (E(ρ) + ∆E(ρ, t))w(t)

z(t) = (C(ρ) +D(ρ)K(ρ))x(t) + Ch(ρ)x(t− h(t)) + F (ρ)w(t)
(5.4)

The solution is given using the relaxed version of the LMI condition obtained from the
simple Lyapunov-Krasovskii functional as described in Section 3.5.2. Hence by a substitution
of the closed-loop into the relaxed LMI, a simple existence test of the controller can be
provided in terms of parameter dependent LMIs.

Theorem 5.1.2 There exists a state-feedback control law of the form u(t) = K(ρ)x(t) which
asymptotically stabilizes system (5.1) with h(t) ∈ H ◦

1 if there exist a continuously differen-
tiable matrix function P̃ : Uρ → Sn++, constant matrices Y ∈ Rn×n, Q̃, R̃ ∈ Sn++, a matrix
function V : Uρ → Rm×n, a scalar γ > 0 and scalar function ε : Uρ → R++ such that the
LMIs



Ũ11(ρ) Ah(ρ)Y E(ρ) 0 Y hmaxR̃ 0
? Ũ33 0 Y TCh(ρ)T 0 0 Y THAh

(ρ)T

? ? −γIpF (ρ)T 0 0 HE(ρ)T

? ? ? −γIq 0 0 0
? ? ? ? −P̃ (ρ) −hmaxR̃ 0
? ? ? ? ? R̃ 0
? ? ? ? ? ? −ε(ρ)I




≺ 0 (5.5)

and
Ker[U1(ρ)]TΞ(ρ, ν)Ker[U1(ρ)] ≺ 0 (5.6)

hold for all (ρ, ν) ∈ Uρ × Uν where Ξ(ρ, ν) is defined by



Ũ11(ρ) P̃ (ρ) +A(ρ)Y Ah(ρ)Y E(ρ) 0 Y hmaxR̃ 0
? Ũ22(ρ, ν) R̃ 0 Y TC(ρ)T 0 0 Y THA(ρ)T

? ? Ũ33 0 Y TCh(ρ)T 0 0 Y THAh
(ρ)T

? ? ? −γIpF (ρ)T 0 0 HE(ρ)T

? ? ? ? −γIq 0 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃ 0
? ? ? ? ? ? R̃ 0
? ? ? ? ? ? ? −ε(ρ)I




Ũ11(ρ) = −(Y + Y T ) + ε(ρ)G(ρ)G(ρ)T

Ũ22(ρ, ν) = −P̃ (ρ) + Q̃− R̃+ ∂ρP̃ (ρ)ν
Ũ33 = −(1− µ)Q̃− R̃
U1(ρ) =

[
B(ρ)T 0 0 0 D(ρ)T 0 0 HB(ρ)T

]

U2 =
[

0 I 0 0 0 0 0 0
]
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In this case a suitable controller is given by the expression:

K(ρ) = −τU1(ρ)Ψ(ρ, ρ̇)UT2 (U2Ψ(ρ, ρ̇)UT2 )−1Y −1

τ > 0 such that Ψ(ρ, ρ̇) = (τU1(ρ)TU1(ρ)− Ξ(ρ, ρ̇))−1 � 0
(5.7)

or by solving the LMI

Ξ̃(ρ, ν) + B̄(ρ)K(ρ)Y C̄ + [B̄(ρ)K(ρ)Y C̄]T ≺ 0 (5.8)

in K(ρ). Moreover with such a control law, the closed-loop system satisfies ||z||L2 ≤ γ||w||L2.

Proof : The proof is based on an application of lemma 3.5.2. Substituting matrices of the
closed-loop system (5.4) into LMI (3.95), we get

Ψ̄(ρ, ν) + Ḡ(ρ)T∆(t)H̄(ρ) + (?)T ≺ 0 (5.9)

where Ψ̄(ρ, ν) is defined by



−XH U12(ρ) XTAh(ρ) XTE(ρ) 0 XT hmaxR
? U22(ρ, ν) R 0 U25(ρ)T 0 0
? ? U33(ρ) 0 Ch(ρ)T 0 0
? ? ? −γIp F (ρ)T 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R




with

U12(ρ) = P (ρ) +XT (A(ρ) +B(ρ)K(ρ))
U25(ρ) = (C(ρ) +D(ρ)K(ρ))

U22(ρ, ν) = −P (ρ) +Q−R+ ∂ρP (ρ)ν
U33 = −(1− µ)Q−R
Ḡ(ρ) =

[
G(ρ)TX 0 0 0 0 0 0

]

H̄(ρ) =
[

0 HA(ρ) +HB(ρ)K(ρ) HAh
(ρ) HE(ρ) 0 0 0

]

Due to the structure of LMI (5.9) it is possible to apply the bounding lemma (see Appendix
E.14) and hence we obtain the following LMI

Ψ̄(ρ, ν) + ε(ρ)Ḡ(ρ)T Ḡ(ρ) + ε(ρ)−1H̄(ρ)T H̄(ρ)T ≺ 0

which involves an additional scalar function ε(ρ).
Then perform a congruence transformation with respect to matrix diag(Y, Y, Y, I, I, Y, Y )

where Y = X−1 and using the change of variable V (ρ) = K(ρ)Y we get the inequality:

Ψ(ρ, ν) + ε(ρ)G(ρ)TG(ρ) + ε(ρ)−1H(ρ)TH(ρ) ≺ 0 (5.10)

where Ψ(ρ, ν) is defined by



−(Y + Y T ) Ũ12(ρ) Ah(ρ)Y E(ρ) 0 Y hmaxR̃

? Ũ22(ρ, ν) R̃ 0 U25(ρ) 0 0
? ? Ũ33 0 Y TCh(ρ)T 0 0
? ? ? −γIp F (ρ)T 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃



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in which

Ũ12(ρ) = P̃ (ρ) +A(ρ)Y +B(ρ)V (ρ)
Ũ25(ρ) = [C(ρ)Y +D(ρ)V (ρ)]T

Ũ22(ρ, ν) = −P̃ (ρ) + Q̃− R̃+ ∂ρP̃ (ρ)ν
Ũ33 = −(1− µ)Q̃− R̃
P̃ (ρ) = Y TP (ρ)Y
Q̃ = Y TQY

R̃ = Y TRY

G(ρ) =
[
G(ρ)T 0 0 0 0 0 0

]

H(ρ) =
[

0 HA(ρ)Y +HB(ρ)V (ρ) HAh
(ρ)Y HE(ρ) 0 0 0

]

The latter inequality is not a LMI due to the term ε(ρ)−1H(ρ)TH(ρ) but using the Schur
complement formula (see Appendix E.15) we get the following equivalent LMI formulation:

[
Ψ(ρ, ν) + ε(ρ)G(ρ)TG(ρ) H(ρ)T

? −ε(ρ)

]
≺ 0 (5.11)

Now rewrite the latter LMI as

Ξ(ρ, ν) + U1(ρ)TV (ρ)U2 + (?)T ≺ 0 (5.12)

where Ξ(ρ, ν) is defined by



Ũ11(ρ) Ũ12(ρ) Ah(ρ)Y E(ρ) 0 Y hmaxR̃ 0
? Ũ22(ρ, ν) R̃ 0 Y TC(ρ)T 0 0 Y THA(ρ)T

? ? Ũ33 0 Y TCh(ρ)T 0 0 Y THAh
(ρ)T

? ? ? −γIpF (ρ)T 0 0 HE(ρ)T

? ? ? ? −γIq 0 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃ 0
? ? ? ? ? ? R̃ 0
? ? ? ? ? ? ? −ε(ρ)I




with

Ũ11(ρ) = −(Y + Y T ) + ε(ρ)G(ρ)G(ρ)T

Ũ12(ρ) = P̃ (ρ) +A(ρ)Y
U1(ρ) =

[
B(ρ)T 0 0 0 D(ρ)T 0 0 HB(ρ)T

]

U2 =
[

0 I 0 0 0 0 0 0
]

Since V (ρ) is a free variable then the projection lemma applies (see appendix E.18) and
we get conditions of theorem 5.1.2. The controller can be constructed using either

Ξ(ρ, ν) + U1(ρ)TV (ρ)U2 + (?)T ≺ 0

or by applying the algebraic relations given in Appendix A.9. �
The latter theorem is a theorem stating the existence of a parameter dependent matrix gain

K(ρ) such that system (5.4) is asymptotically stable and ||z||L2 ≤ γ||w||L2 . The advantage of
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such a result is the possibility of constructing the controller from algebraic equations involving
only known matrices computed from the solution of the LMI problem. The advantage of such
a construction is that the computed controller will fit exactly the predicted performances. On
the other hand, such a controller may depend on the parameter derivative (as emphasized by
the relaxation (5.7)) making the controller (in most of the cases) unimplementable in practice.
Three solutions are offered to overcome this difficulty:

1. Choose a constant matrix P which removes the parameter derivative term but increas-
ing the conservatism of the approach by tolerating arbitrarily fast varying parameters
(quadratic stability).

2. Construct the controller using SDP (5.8) but in this case a specific structure must be
affected to the controller (for instance polynomial in ρ) which may result in a deterio-
ration of performances. Moreover, since the structure of the controller is chosen by the
designer after solving for the other matrices (i.e. P̃ , Q̃, R̃, Y ), then the SDP may have
no solution if the controller is not sufficiently complex.

This nonequivalence is a consequence of the parameter varying nature of the matrices
involved in the LMIs and the will of considering robust stability. The following result solves
this problem of non-equivalence between the set of LMIs of Theorem 5.1.2 and the SDP (5.8)
by providing a global approach where only one LMI has to be solved.

Theorem 5.1.3 There exists a state-feedback control law of the form u(t) = K(ρ)x(t) which
asymptotically stabilizes system (5.1) with h(t) ∈ H ◦

1 if there exist a continuously differ-
entiable matrix function P̃ : Uρ → Sn++, a matrix function V (ρ) : Uρ → Rm×n, constant
matrices Y ∈ Rn×n, Q̃, R̃ ∈ Sn++, a matrix function V : Uρ → Rm×n, a scalar γ > 0 and a
scalar function ε : Uρ → R++ such that the LMI

[
Ψ(ρ, ν) + ε(ρ)G(ρ)TG(ρ) H(ρ)T

? −ε(ρ)I

]
≺ 0 (5.13)

holds for all (ρ, ν) ∈ Uρ × Uν where Ψ(ρ, ν) is defined by



−Y H Ũ12(ρ) Ah(ρ)Y E(ρ) 0 Y hmaxR̃

? Ũ22(ρ, ν) R̃ 0 U25(ρ) 0 0
? ? Ũ33 0 Ch(ρ)T 0 0
? ? ? −γIp F (ρ)T 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃




Ũ12(ρ) = P̃ (ρ) +A(ρ)Y +B(ρ)V (ρ)
Ũ25(ρ) = [C(ρ)Y +D(ρ)V (ρ)]T

G(ρ) =
[
G(ρ)T 0 0 0 0 0 0

]

H(ρ) =
[

0 HA(ρ)Y +HB(ρ)V (ρ) HAh
(ρ) HE(ρ) 0 0 0

]

Ũ22(ρ, ν) = −P̃ (ρ) + Q̃− R̃+ ∂ρP (ρ)ν
Ũ33 = −(1− µ)Q̃− R̃
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In this case, a suitable control law is given by u(t) = K(ρ)x(t) where K(ρ) = V (ρ)Y −1 and
the closed-loop system (5.4) satisfies

||z||L2 ≤ γ||w||L2

Proof : The proof follows the same lines as for the proof of Theorem 5.1.2 but stops just
before the application of the projection lemma. �

As for theorem 5.1.2, the structure of the controller is fixed by the designer through
the choice of the structure of V (ρ) and may result in conservative results if the structure
is sufficiently complex or not. On the other hand, Theorem 5.1.3 is easier to use since
the controller synthesis is made in one step only while the number of steps for controller
computation using Theorem 5.1.2 is two. The interest of Theorem 5.1.2 is to provide in the
first step (the solution of the projected inequalities) the minimal γ that can be expected using
this Lyapunov-Krasovskii functional (modulo the conservatism induced by the relaxation)
whatever the structure of the controller is. Hence, this result may be used to tune the
complexity of the controller using Theorem 5.1.3.

Remark 5.1.4 Another result has been developed in [Briat et al., 2008c] for uncertain LTI
time-delay systems using the full-block S-procedure approach [Scherer, 2001, Wu, 2003]. The
results of [Briat et al., 2008c] can be extended to the LPV framework by authorizing a param-
eter dependent Lyapunov function and parameter dependent scalings.

5.1.2 Memoryless State-Feedback Design - Relaxed Discretized
Lyapunov-Krasovskii functional

The Lyapunov-Krasovskii functional used to derive conditions of Theorems 5.1.2 and 5.1.3 is
simple in the sense that the decision matrices are in finite number and is small. Thus latter
results can be enhanced and completed by considering more a complex functional, where
functions have to be found. Due to the difficulty to find numerically such functions, the
functions are then approximated by piecewise constant functions and the obtained functional
is called ’the discretized version’ of such a functional. On each interval where the functions are
constant, are associated decision matrices and hence it seems obvious that such an approach
would result in less conservative results than by using a simple Lyapunov-Krasovskii functional
due to a greater number of decision matrices.

The following result is obtained by the use of the relaxation of the discretized Lyapunov-
Krasovskii functional described in Theorem 3.6.4 of Section 3.6.2. The methodology is usual:
substitute the closed-loop system in the LMI and then turn the BMI problem into a LMI one
through the use of congruence transformation.

Theorem 5.1.5 There exists a state-feedback control law of the form u(t) = K(ρ)x(t) which
asymptotically stabilizes system (5.1) with h(t) ∈ H ◦

1 if there exist a continuously dif-
ferentiable matrix function P̃ : Uρ → Sn++, constant matrices Y ∈ Rn×n, Q̃i, R̃i ∈ Sn++,
i = 0, . . . , N − 1, a matrix function V : Uρ → Rm×n, a scalar γ > 0 and a scalar function
ε : Uρ → R++ such that the LMIs

[
Ψ(ρ, ν) + ε(ρ)G(ρ)TG(ρ) H(ρ)T

? −ε(ρ)I

]
≺ 0 (5.14)
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holds for all (ρ, ρh, ν) ∈ Uρ × Uρh
× Uν and where

Ψ(ρ, ν) =




−Y H Ũ12(ρ) 0 Y h̄1R̃0 . . . h̄1R̃N−1

? Ũ22(ρ, ν) Ũ23(ρ) 0 0 . . . 0
? ? −γI 0 0 . . . 0
? ? ? −P̃ (ρ) −h̄1R̃0 . . . −h̄1R̃N−1

? ? ? ? −diagi R̃i




Ũ22 =




Ũ ′11 R̃0 0 0 . . . 0 0
? Ñ

(1)
1 R̃1 0 . . . 0 0

? ? Ñ
(1)
2 R̃2 0 0

. . . . . .
...

...
. . . R̃N−1 0

Ñ (2) 0
? ? ? . . . 0 0 −γI




and

Ũ ′11 = ∂ρP̃ (ρ)ρ̇− P̃ (ρ) + Q̃0 − R̃0

Ñ
(1)
i = −(1− iµN )Q̃i−1 + (1 + iµN )Q̃i − R̃i−1 − R̃i

Ñ (2) = −(1− µ)Q̃N−1 − R̃N−1

Ũ12(ρ) =
[
P̃ (ρ) +A(ρ)Y +B(ρ)V (ρ) 0 . . . 0 Ah(ρ)Y . . . 0 E(ρ)

]

Ũ23(ρ) =
[
C(ρ)Y +D(ρ)V (ρ) 0 . . . 0 Ch(ρ) F (ρ)

]T

G(ρ) =
[

0 G(ρ)T 0 . . . 0 0 0 0 0 . . . 0
]

H(ρ) =
[

0 HA(ρ)Y +HB(ρ)V (ρ) 0 . . . 0 HAh
(ρ)Y HE(ρ) 0 0 . . . 0

]

Proof : The proof is similar as for the proof of theorem 5.1.3 but using lemma 3.6.4. �
It is important to emphasize that without the use of any relaxation which decouples

the matrix A from the decision matrices P (ρ), Ri, the controller synthesis directly using
Theorem 3.6.2 would be a difficult problem. Indeed, in this case and similarly as in other
methods (see for instance [Fridman and Shaked, 2002b]), the only available relaxation would
be P (ρ) = εi(ρ)Ri for some positive scalar functions εi(ρ). Such a relaxation would greatly
increase the conservatism of the approach until removing all the contributions of the use of
the discretized Lyapunov-Krasovskii.

The choice of P (ρ) is arbitrary and, based on the experience of different authors, it is
important to ’mimic’ the system dependence on the parameters, e.g. if A(ρ) = A2ρ

2+A1ρ+A0

then P (ρ) must be at least of order 2. Moreover, the controller dependence must be close to
this order to.

5.1.3 Memoryless State-Feedback Design - Simple Lyapunov-Krasovskii
functional

Part of this thesis pertains on the difference between a priori (before the substitution of
closed-loop system matrices in the stability/performances) and a posteriori relaxations (after
substitution) in the design of controllers, observers and filters for (uncertain) LTI and LPV
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time-delay systems. It is shown that, in most of the cases, a priori relaxation leads to better
results than a posteriori relaxations. This section is about the use of the original simple
stability/performances test without any a priori relaxation and we will show that it is possible
to define a relevant relaxation scheme associated with an algorithm whose structure is close
to the D-K iteration technique used in µ-synthesis [Gahinet et al., 1995]. The D-K iteration
algorithm is a very simple algorithm used to solve BMI problems where the coupled variables
are found alternatively.

The proposed approach developed in this section is based on the properties of the adjoint
system of a time-delay system [Bensoussan et al., 2006, Suplin et al., 2006]. The interest of
adjoint systems is to allow for the computation of controllers without any congruence trans-
formation on the matrix inequalities. While this is not very interesting for finite dimensional
linear systems, it is of great importance for time-delay systems for which a large number
of decision matrices are involved in the stability conditions. Indeed, linearizing congruence
transformations on matrix inequalities may not exist in time-delay system framework (for
instance there exists no linearizing congruence transformation for state-feedback design using
LMI (3.80) of Lemma 3.5.1).

5.1.3.1 About adjoint systems of LPV systems

The first property of adjoint system of a LTI system is that the stability of the adjoint is
equivalent to the stability of the original system. Moreover, the H∞-norm is also preserved by
considering the adjoint. However, does that statement hold when the system is time-varying
(LTV or LPV) ? Actually, this is not a trivial equation since the outputs are computed by
integrating time-varying matrices and then for a given input, the outputs of the original and
the adjoint systems are different. Thus they have different energies.

However, in the light of the use of the dualization lemma (see Appendix E.13) for LTV/LPV
systems expressed under LFT forms, it turns out that the L2-induced norm is preserved by
considering the adjoint. However, the worst-case signal (the signal for which the L2-induced
norm is effectively attained) will be different for the original and the adjoint system.

Let us consider the system

ẋ(t) = A(ρ)x(t) + B(ρ)w1(t)
z1(t) = C(ρ)x(t) +D(ρ)w1(t)

(5.15)

which is rewritten in the LFT form

ẋ(t) = Ax(t) +B0w0(t) +B1w1(t)
z0(t) = C0x(t) +D00w0(t) +D01w1(t)
z1(t) = C1x(t) +D10w0(t) +D11w1(t)
w0(t) = Θ(ρ)z0(t)

(5.16)

For such a system, the adjoint is given by the expression:

˙̃x(t) = AT x̃(t) + CT0 w̃0(t) + CT1 w̃1(t)
z̃0(t) = BT

0 x̃(t) +DT
00w̃0(t) +DT

10w̃1(t)
z̃1(t) = BT

1 x̃(t) +DT
01w̃0(t) +DT

11w̃1(t)
w̃0(t) = Θ(ρ)T z̃0(t)

(5.17)

Since every LPV system can be turned into an equivalent ’LFT’ system, this approach is
very general to demonstrate that the L2-norm of (5.16) and (5.17) coincides. The following
results shows the identity:
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Theorem 5.1.6 Let us consider system (5.15) and (5.16), then the following statements are
equivalent:

1. The LPV system is quadratically stable if and only if there exist P ∈ Sn++, F ∈ S2n0

and a scalar γ > 0 such that following LMIs




I 0 0
A B0 B1

0 I 0
C0 D00 D01

0 0 I
C1 D10 D11




T 


0 P 0 0 0
P 0 0 0 0
0 0 F 0 0
0 0 0 −γI 0
0 0 0 0 γ−1I







I 0 0
A B0 B1

0 I 0
C0 D00 D01

0 0 I
C1 D10 D11



≺ 0 (5.18)

[
Θ(ρ)
I

]T
F

[
Θ(ρ)
I

]
� 0 (5.19)

holds for all ρ ∈ Uρ. In this case, the system satisfies ||z||L2 < γ||w||L2.

2. LPV system is quadratically asymptotically stable if and only if there exist P̃ ∈ Sn++,
F̃ ∈ S2n0 and a scalar γ > 0 such that following LMIs




AT CT0 CT1
I 0 0
BT

0 DT
00 DT

10

0 I 0
BT

1 DT
01 DT

11

0 0 I




T 


0 P̃ 0 0 0
P̃ 0 0 0 0
0 0 F̃ 0 0
0 0 0 −γ−1I 0
0 0 0 0 γI







AT CT0 CT1
I 0 0
BT

0 DT
00 DT

10

0 I 0
BT

1 DT
01 DT

11

0 0 I



� 0

(5.20)[
−I

Θ(ρ)T

]T
F

[
−I

Θ(ρ)T

]
� 0 (5.21)

holds for all ρ ∈ Uρ. In this case, the system satisfies ||z||L2 < γ||w||L2.

Moreover, we have the following relations between the matrices:

P̃ = P−1

F̃ = F−1

Proof : Statement 1 can be obtained by applying the full-block S-procedure on LFT system
(5.16). See Appendix E.12, Section 1.3.4.4 or [Scherer, 2001] for more details. Statement
can be proved by applying the dualization lemma (see Appendix E.13 or [Scherer, 2001]) on
LMIs (5.18) and (5.19). �

Actually, it is difficult to see that it suffices to replace the original system matrices by
adjoint matrices into the matrix inequality (5.18) to obtain (5.20). This motivates the intro-
duction of the following corollary where we have assumed that we have Θ(ρ)TΘ(ρ) ≤ I and
F = diag(−In0 , In0):

Corollary 5.1.7 Let us consider system (5.15) and (5.16), then the following statements are
equivalent:
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1. The LPV system is quadratically stable if there exist P ∈ Sn++ and a scalar γ > 0 such
that following LMIs




PA+ATP PB0 PB1 CT1 CT0
? −I 0 DT

10 DT
00

? ? −γI DT
11 DT

01

? ? ? −γI 0
? ? ? ? −I



≺ 0 (5.22)

2. The LPV system is quadratically stable if there exist P̃ ∈ Sn++ and a scalar γ > 0 such
that following LMIs




PAT +AP PCT0 PCT1 B1 B0

? I 0 D01 D00

? ? −γI DT
11 D10

? ? ? −γI 0
? ? ? ? −I



≺ 0 (5.23)

Proof : The proof is done by expanding the inequalities and the above matrix inequalities
are obtained modulo Schur complement arguments (see Appendix E.15). �

From this result, it is possible to conclude that the L2-induced norm is identical for a
time-varying system and its adjoint since the same LMI structure is feasible for both system.
Roughly speaking, it suffices to substitute the adjoint system in the original stability condition.
This means that we can strongly think that it is also the case for time-delay systems. This
has been done in the case of LTI system in [Suplin et al., 2006] and this means that it is
also the case for uncertain LTI time-delay systems with constant uncertainties. In the case
of time-varying uncertainties it has been shown in [Wu, 2003] using the dualization lemma
(see Appendix E.13) that the delay-independent stability with L2 performances is preserved
by considering the adjoint system. Although the dualization lemma provides an efficient
and strongly theoretical way to deal correctly with adjoint systems, the rank condition (see
Appendix E.13) is unfortunately rarely satisfied while considering time-delay systems and this
makes the use of the adjoint a difficult problem in the context of LPV time-delay systems.

5.1.3.2 LPV Control of LPV time-delay systems using adjoint

One of our papers [Briat et al., 2008c], provides a solution to the state-feedback stabilization
problem of uncertain time-delay systems and it is shown that adjoint of delay systems may
involve delayed uncertainties and delayed loop inputs creating then difficulties and leading to
some conservatism when the delayed state is affected by uncertainties. A solution is provided
using the projection lemma (see Appendix E.18) and the cone-complementary algorithm
[Ghaoui et al., 1997] used here to relax a non-convex (even concave) term in a matrix inequality
similarly as in [Chen and Zheng, 2006]. Since this paper only deals with uncertain systems
and not LPV, this will not be explained here but such an approach can be generalized to the
LPV framework by introducing parameter dependent matrices in the Lyapunov-Krasovskii
functionals and by authorizing the scalings (separators) to be parameter dependent. On the



5.1. STATE-FEEDBACK CONTROL LAWS 207

other hand, this makes the cone complementary algorithm unapplicable since this algorithm
can only be applied on constant matrices while we are in presence of parameter dependent
matrices.

In what follows, we propose a method to solve this problem which has been proposed in
[Briat et al., 2008d]. The idea of the method is the following: first of all the LMI (3.80)
of Lemma 3.5.1 (Section 3.5.1), obtained from a simple parameter dependent Lyapunov-
Krasovskii functional, is considered. This LMI has two coupled terms P (ρ)A(ρ) and RA(ρ)
which means that if the closed-loop is substituted into, then exact linearization by congruence
transformations is not possible (i.e. P (ρ)(A(ρ)+B(ρ)K(ρ)) and R(A(ρ)+B(ρ)K(ρ))). Since
it is not wished to simplify the relation by fixing P (ρ) = α(ρ)R for instance, another path
is considered. This path is the use of the projection lemma whose action is to remove the
controller matrix from the inequalities. If the projection lemma were applied directly on the
original system then it would lead to a projection with respect to a basis of the kernel of
matrices

M1 =
[
I 0 0 0 0

]

M2(ρ) =
[
B(ρ)TP (ρ) 0 0 D(ρ)T hmaxB(ρ)TR

]

since we have an inequality of the form

Ψo(ρ, ρ̇) +M2(ρ)TK(ρ)M1 + (?)T ≺ 0.

From the expression of M2(ρ) we can see that

Ker[M2(ρ)] = diag(P (ρ)−1, I, I, I, h−1
maxR

−1)Ker
[
B(ρ)T 0 0 D(ρ)T B(ρ)T

]

and hence a congruence transformation with respect to diag(P (ρ)−1, I, I, I, h−1
maxR

−1) has to
be performed and leads to nonlinear terms in the resulting conditions. Moreover, these non-
linear terms cannot be relaxed since the kernel Z(ρ) surrounds the matrix NL(·) containing
these nonlinear terms

Z(ρ)TNL
{
X(ρ), Q,R,X(ρ)QX(ρ), X(ρ)RX(ρ), R−1, X(ρ)R, ρ, ρ̇

}
Z(ρ) ≺ 0

where X(ρ) = P (ρ)−1,Z(ρ) = Ker
[
B(ρ)T 0 0 D(ρ)T B(ρ)T

]
Such a configuration

prevents any congruence transformations in order to linearize the inequality and the high
number of nonlinear terms indicates that considering the original system with this stabil-
ity/performance test is not a good idea.

Let us consider now the adjoint system instead: in this case, the projection must be done
with respect to a basis of the kernel of matrices

M1(ρ) =
[
P (ρ) 0 0 0 hmaxR

]

M2(ρ) =
[
B(ρ)T 0 D(ρ)T 0 0

]

since we have inequality

Ψa(ρ, ρ̇) +M2(ρ)TK(ρ)M1 + (?)T ≺ 0

We can see in this case that no congruence transformation is needed and it is possible to
project immediately: this is the interest of the use of the adjoint. After that, since the matrix



208 CHAPTER 5. CONTROL OF LPV TIME-DELAY SYSTEMS

P (ρ) and R are nonsingular then there exist an infinite number of values for Ker[M1(ρ)] and
moreover this set can be given explicitly. The next step of the approach resides in the choice
of a ’good’ kernel basis for M1(ρ). It is shown that a good basis is given by




I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

−h−1
maxR

−1P (ρ) 0 0 0




and such a choice limits the number of nonlinearities: there is only one nonlinearity of the
form −h2

maxP (ρ)R−1P (ρ) which is a concave nonlinearity meaning that it is difficult to relax.
The remaining of the approach consists in relaxing exactly this concave nonlinearity by a BMI
involving a ’slack’ variable (see Section 3.3) which is more simple to solve than the ’rational’
matrix inequality involving the matrix R and its inverse. This approach leads then to the
following theorem:

Theorem 5.1.8 There exists a state-feedback control law of the form u(t) = K(ρ)x(t) which
asymptotically stabilizes nominal system (5.1) (with Ch(·) = 0 and ∆ = 0) with h(t) ∈ H ◦

1

if there exist a continuously differentiable matrix function P : Uρ → Sn++, constant matrices
Q,R ∈ Sn++, a scalar γ > 0 and scalar function ε : Uρ → R++ such that the matrix inequalities




Q−R+ ∂ρP (ρ)ν − h−2
maxP (ρ)R−1P (ρ) R 0 E(ρ)

? −(1− µ)Q−R 0 0
? ? −γI 0
? ? ? −γI



≺ 0 (5.24)

Ker[U(ρ)]TΨ(ρ, ν)Ker[U(ρ)] ≺ 0 (5.25)

holds for all (ρ, ν) ∈ Uρ × Uν where Ψ(ρ, ν) is defined by




A(ρ)P (ρ) + (?)T +Q−R+ ∂ρP (ρ)ν P (ρ)Ah(ρ)T +R P (ρ)C(ρ)T E hmaxA(ρ)R
? −(1− µ)Q−R 0 0 hmaxAh(ρ)R
? ? −γI F (ρ) hmaxC(ρ)R
? ? ? −γI 0
? ? ? ? −R




U(ρ) =
[
B(ρ)T 0 D(ρ)T 0 0

]

Moreover, in this case a suitable control law can be computed by solving the following SDP in
K(ρ)

Ψ(ρ, ν) + U(ρ)TK(ρ)V (ρ) + (?)T ≺ 0 (5.26)

with V (ρ) =
[
P (ρ) 0 0 0 hmaxR

]
and the closed-loop system satisfies ||z||L2 ≤ γ||w||L2.

Proof : The proof is based on an application of lemma 3.5.2 which considers the stability
and L2 performances for general time-delay systems through a simple Lyapunov-Krasovskii
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functional. Substituting matrices of the closed-loop system (5.4) into LMI (3.95) with Ch(·) =
0 and ∆ = 0 we get:




Acl(ρ)P (ρ) + (?)T +Q−R+ ∂ρP (ρ)ν P (ρ)Ah(ρ)T +R P (ρ)Ccl(ρ)T E(ρ) hmaxAcl(ρ)R
? −(1− µ)Q−R 0 0 hmaxAh(ρ)R
? ? −γI F (ρ) hmaxCcl(ρ)R
? ? ? −γI 0
? ? ? ? −R



≺ 0

(5.27)
with Acl(ρ) = A(ρ) +B(ρ)K(ρ) and Ccl(ρ) = C(ρ) +D(ρ)K(ρ). The latter inequality can be
rewritten as

Ψ(ρ, ν) + U(ρ)TK(ρ)V (ρ) + V (ρ)TK(ρ)TU(ρ) ≺ 0 (5.28)

where Ψ(ρ, ν) is defined by




A(ρ)P (ρ) + (?)T +Q−R+ ∂ρP (ρ)ν P (ρ)Ah(ρ)T +R P (ρ)C(ρ)T E hmaxA(ρ)R
? −(1− µ)Q−R 0 0 hmaxAh(ρ)R
? ? −γI F (ρ) hmaxC(ρ)R
? ? ? −γI 0
? ? ? ? −R




U(ρ) =
[
B(ρ)T 0 D(ρ)T 0 0

]

V (ρ) =
[
P (ρ) 0 0 0 hmaxR

]

Hence the projection lemma applies and we get the following underlying matrix inequalities:

Ker[U(ρ)]TΨ(ρ, ν)Ker[U(ρ)] ≺ 0
Ker[V (ρ)]TΨ(ρ, ν)Ker[V (ρ)] ≺ 0

(5.29)

While Ker[U(ρ)] cannot be computed exactly in the general case, Ker[V (ρ)]can since it
involves unknown decision matrices P (ρ) and R whose properties are knwon. The whole
null-space of V (ρ) is spanned by

Ker[V (ρ)] =




P1(ρ) 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

P2(ρ) 0 0 0




where P1(ρ) and P (ρ) are such that P (ρ)P1(ρ) + hmaxP2(ρ)R = 0. Since the matrices P (ρ)
and R are positive definite and hence nonsingular then there exists an infinite number of
couple of solutions (P1(ρ), P2(ρ)). Choosing P1(ρ) = I and P2(ρ) = −h−1

maxR
−1P (ρ) we get

the following basis for the nullspace of V (ρ):

Ker[V (ρ)] =




I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 I

−h−1
maxR

−1P (ρ) 0 0 0




(5.30)
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Finally applying the projection lemma we get inequality Ker[V (ρ)]TΨ(ρ, ν)Ker[V (ρ)] ≺ 0
which is equivalent to




Q−R+ ∂ρP (ρ)ν − h−2
maxP (ρ)R−1P (ρ) R 0 E(ρ)

? −(1− µ)Q−R 0 0
? ? −γI 0
? ? ? −γI


 ≺ 0 (5.31)

And we obtain a sufficient condition for the existence of a stabilizing controller. The com-
putation of the controller can be done by SDP. Indeed, after solving the existence conditions,
the variables P (ρ), Q,R, γ are known and hence the matrix inequality (5.28) is linear in K(ρ)
and is a LMI problem. �

It is worth mentioning that matrix inequality (5.24) is strongly nonconvex due to the
term −h−2

maxP (ρ)R−1P (ρ) which is a concave nonlinearity. In [Briat et al., 2008c, Chen and
Zheng, 2006] such a nonlinearity is relaxed by considering the inverse of matrix P (which is
parameter independent in their case) and hence such a problem can be solved using the cone
complementary algorithm [El-Ghaoui and Gahinet, 1993]. However, in the present case, such
a relaxation scheme cannot be considered due to the parameter dependence of P (ρ) which is
a matrix function. Hence, new relaxation schemes should be developed.

The first one is just mentioned for completeness but will not be detailed deeper due to its
(too high) conservatism. It proposes to bound the concave function by an hyperplane (which
is a linear function). This is done using a completion of the squares (see Section 3.3) and we
get

− h−2
maxP (ρ)R−1P (ρ) � −2P (ρ) + h2

maxR (5.32)

Actually this method is too conservative since it corresponds to a linearization of the
nonlinearity around a certain point and hence the approximation is correct in a neighborhood
of the linearization point only. This motivates the development and use of a more complex
relaxation which is described in Section 3.3. Such a relaxation turns the rational nonlinearity
into a bilinear nonlinearity in which the bilinearities occur with an introduced ’slack’ variable.

Theorem 5.1.9 There exists a state-feedback control law of the form u(t) = K(ρ)x(t) which
asymptotically stabilizes nominal system (5.1) (with Ch(·) = 0 and ∆ = 0) for all h(t) ∈H ◦

1

if there exist a continuously differentiable matrix function P : Uρ → Sn++, a matrix function
Λ : Uρ → Rn×n, constant matrices Q,R ∈ Sn++, a scalar γ > 0 and scalar function ε : Uρ →
R++ such that the matrix inequalities




Q−R+ ∂ρP (ρ)ν + Λ(ρ)TP (ρ) + P (ρ)Λ(ρ) R 0 E(ρ) Λ(ρ)TR
? −(1− µ)Q−R 0 0 0
? ? −γI 0 0
? ? ? −γI 0
? ? ? −? −h2

maxR



≺ 0

(5.33)

Ker[U(ρ)]TΨ(ρ, ν)Ker[U(ρ)] ≺ 0 (5.34)
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holds for all (ρ, ν) ∈ Uρ × Uν where Ψ(ρ, ν) is defined by




A(ρ)P (ρ) + (?)T +Q−R+ ∂ρP (ρ)ν P (ρ)Ah(ρ)T +R P (ρ)C(ρ)T E hmaxA(ρ)R
? −(1− µ)Q−R 0 0 hmaxAh(ρ)R
? ? −γI F (ρ) hmaxC(ρ)R
? ? ? −γI 0
? ? ? ? −R




U(ρ) =
[
B(ρ)T 0 D(ρ)T 0 0

]

Moreover, in this case a suitable control law can be computed by solving the following SDP in
K(ρ)

Ψ(ρ, ν) + U(ρ)TK(ρ)V (ρ) + (?)T ≺ 0 (5.35)

with V (ρ) =
[
P (ρ) 0 0 0 hmaxR

]
and the closed-loop system satisfies ||z||L2 ≤ γ||w||L2.

Proof : The relaxation is done using Theorem 3.3.4 on the matrix inequality
[

Φ11 − h2
maxP (ρ)R−1P (ρ) Φ12(ρ)

? Φ22

]
≺ 0

where

[
Φ11(ρ) Φ12(ρ)
? Φ22

]
=




Q−R+ ∂ρP (ρ)ν R 0 E(ρ)
? −(1− µ)Q−R 0 0
? ? −γI 0
? ? ? −γI




and η(ρ) = Λ(ρ), α(ρ) = P (ρ) and β = h−2
maxR. �

Although this approach preserves the nonlinearity of the problem, the numerical difficulty
is reduced due to the fact that the problem is bilinear only (while before it was rational). Hence
simple algorithmic tools can be used to solve it and then provide local optimal solutions. One
of the interest of this ’slack’ variable is to decouple Lyapunov matrices allowing to solve them
simultaneously while in the first nonlinear problem P (ρ) and R needed to be solved separately
without taking into account that matrices R and R−1 appear in the same inequality. So, even
if the problem is still nonlinear, the nonlinearities are much ’nicer’.

The following algorithm describes how to this nonlinear optimization problem:

Algorithm 5.1.10 1. Generate an initial symmetric constant matrix Λ0 such that ΛT0 P+
PΛ0 ≺ 0, choose a common structure for P (ρ) and Λ(ρ) e.g. Z(ρ) = Z0 + Z1ρ + Zρ2

with Z(ρ) = {P (ρ),Λ(ρ)}.

2. Solve the optimization problem

min γ
such that P (ρ), Q,R � 0, γ > 0
(5.33) and (5.34)

If the problem is unfeasible then go to step 1.
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3. Solve the optimization problem

minγ,Λ(ρ),Q γ

such that Q � 0, γ > 0
(5.33) and (5.34)

4. If stopping criterion is satisfied then stop else go to step 2.

Although this algorithm does not guarantee any global convergence, if the stabilization
problem is feasible it turns out that it is easy to find an initial feasible point Λ0 which can
be defined here by Λ0 = −εI with ε > 0. Moreover, experiments seem to emphasize that a
small number of iterations are sufficient to converge to a local optimum. Advantages of such
an approach is to deal directly with initial bounded real lemma without any relaxation at
the expense of a larger computational complexity. For more details on this relaxation, the
readers should refer to Section 3.3.

Example 5.1.11 In this example we will compare the proposed method expressed through
Theorem 5.1.9 with an existent one proposed in [Zhang and Grigoriadis, 2005]. Let us consider
the system

ẋ(t) =
[

0 1 + φsin(t)
−2 −3 + δsin(t)

]
x(t) +

[
φsin(t) 0.1

−0.2 + δsin(t) −0.3

]
xh(t)

+
[

0.2
0.2

]
w(t) +

[
φsin(t)

0.1 + δsin(t)

]
u(t)

z(t) =
[

0 10
0 0

]
x(t) +

[
0

0.1

]
u(t)

(5.36)

which is borrowed from [Wu and Grigoriadis, 2001] and has been modified by [Zhang and
Grigoriadis, 2005].

Case φ = 0.2 and δ = 0.1:

Choosing ρ(t) = sin(t) as parameter, it can be easily deduced that ρ, ρ̇ ∈ [−1, 1]. The
parameter space is gridded over Np = 40 points uniformly spaced.

Choosing, as in [Zhang and Grigoriadis, 2005], hM = 0.5, µ = 0.5, P (ρ) = Pc and
Λ(ρ) = Λc (quadratic stability), we find γ∗ = 1.8492 in 4 iterations of the algorithm for which
the initial point has been randomly chosen. It is important to note that the first iteration gives
a maximal bound on γ of 1.89 which is also a better result than those obtained before (See [Wu
and Grigoriadis, 2001, Zhang and Grigoriadis, 2005]), for instance in Zhang and Grigoriadis
[2005], an optimal value γ = 3.09 is found. In our case, the resulting a controller is given by
K(ρ) = K0 +K1ρ+K2ρ

2 where K0 =
[
−5.9172 −16.3288

]
, K1 =

[
−53.1109− 32.4388

]

and K2 =
[
−8.4071 3.0878

]
.

It is worth noting that after computing the controller, the L2-induced norm achieved is now
γr = 2.2777 corresponding to an increase of 23.17%. Better performances should be obtained
while considering a more complex controller form but we are limited by the fact that we do
not consider rational controllers.

The values of each coefficient of the gain K(ρ) w.r.t. parameter values are represented at
the top of figure 5.1. The bottom of figure 5.1 describes the gain computed by the method of
[Zhang and Grigoriadis, 2005].
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Figure 5.1: Simulation 1 - Gains controller evolution with respect to the parameter value -
theorem 5.1.9 (top) and method of [Zhang and Grigoriadis, 2005]

Note that despite of lower controller gain values, we obtain better results than in the
previous approaches, this is a great advantage of the proposed method.

For simulation purposes let h(t) = 0.5| sin(t)| and ρ(t) = sin(t) and we will differentiate
two cases: the stabilization with non-zero initial conditions and zero inputs and the stabiliza-
tion with zero initial conditions and non-zero inputs.

Simulation 1: Stabilization (x(0) 6= 0 and w(t) = 0):
We obtain results depicted in figures 5.2-5.4. We can see that the rate of convergence is

very near but using our method the necessary input energy to make the system converge to 0
is less than in the case of [Zhang and Grigoriadis, 2005].
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Figure 5.2: Simulation 1 - State evolution - theorem 5.1.9 in full and [Zhang and Grigoriadis,
2005] in dashed

Figure 5.3: Simulation 1 - Control input evolution - theorem 5.1.9 in full and [Zhang and
Grigoriadis, 2005] in dashed
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Figure 5.4: Simulation 1 - Delay and parameter evolution

Simulation 2: Disturbance attenuation (x(0) = 0 and w(t) 6= 0):
We consider here a unit step disturbance and we obtain the following results depicted in

Figures 5.5-5.7. We can see that our control input has smaller bounds and that the second
state is less affected by the disturbance than by using method of [Zhang and Grigoriadis,
2005]. Remember than the control output z contains the control input and the second state
only, this is the reason why the first state is more sensitive to the disturbance than in [Zhang
and Grigoriadis, 2005].
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Figure 5.5: Simulation 2 - State evolution - theorem 5.1.9 in full and [Zhang and Grigoriadis,
2005] in dashed

Figure 5.6: Simulation 2 - Control input evolution - theorem 5.1.9 in full and [Zhang and
Grigoriadis, 2005] in dashed
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Figure 5.7: Simulation 2 - Delay and parameter evolution

Then we check, the delay upper bound for which a parameter dependent stabilizing con-
troller exists and guarantees γ∗ < 10 with µ = 0.5 and we find hM = 79.1511, for γ∗ < 2
we find hM = 1.750. In [Zhang and Grigoriadis, 2005], the delay upper bound for which a
stabilizing controller exist is hM = 1.65. This shows that our result is less conservative.

Case φ = 2 and δ = 1:
Using the results of [Zhang and Grigoriadis, 2005] no solution is found. With lemma

5.1.9, we find that there exists a controller such that the closed-loop system has a L2-induced
norm lower than γ = 6.4498.

5.1.4 Memoryless state-feedback - Polytopic approach

Let us consider the polytopic LPV time-delay system:

ẋ(t) =
∑N

i=1 (Aix(t) +Ahix(t− hi(t)) +Biu(t) + Eiw(t))
z(t) =

∑N
i=1 (Cix(t) + Chix(t− hi(t)) +Diu(t) + Fiw(t))

(5.37)

where x ∈ Rn, u ∈ Rm, w ∈ Rp, z ∈ Rq and h(t) ∈ H ◦
1 are respectively the state of

the system, the control input, the disturbances, the controlled outputs and the delay of the
system. The goal is to stabilize the system with a LPV polytopic state-feedback control law
of the form:

u(t) =
N∑

i=1

Kix(t) (5.38)
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where the Ki are the gains to be designed. The parameters λi are assumed to evolve within
a unitary polytope (unit simplex) characterized by

Λ :=

{
λi(t) ∈ [0, 1], λi(t) ≥ 0,

∑

i

λi(t) = 1

}
(5.39)

When robust stability is addressed it is convenient to define the set in which the parameters
derivative evolve

Us :=

{
λ̇i(t),

∑

i=1

λ̇i(t) = 0

}
⊂ RN (5.40)

The idea of the approach is to define a parameter dependent Lyapunov-Krasovskii func-
tional similar to those used before. Then we use a relaxation in order to remove coupled terms
and we substitute the closed-loop system into the relaxed stability/performances conditions.
Since the whole polytopic approach is based on the linear dependence on the parameters, it
is not possible here to consider only the vertices since there are quadratic terms in λ(t) in
the LMIs due to the terms B(λ)K(λ) and D(λ)K(λ). We provide here a solution based on
the linearizing result introduced in Section 3.2 and more precisely given in Corollary 3.2.2.
This will turn the quadratic dependence into a linear one and then the latter LMI can be
verified only at the vertices in order to provide a finite set of LMIs characterizing a sufficient
condition for the stabilization of the polytopic LPV system. Finally, as the terms in λ̇ are
linear, a polytopic relaxation can then be directly applied on these terms. This approach
gives rise to the following result:

Theorem 5.1.12 There exists a state-feedback control law of the form u(t) =
∑N

i=1Kix(t)
which asymptotically stabilizes the system (5.37) for all h ∈ H ◦

1 if there exist matrices
P̃i, Q̃, R̃ ∈ Sn++, Y ∈ Rn×n, Vi ∈ Rm×n and a scalar γ > 0 such that the parameter depen-
dent LMI:

Ω0 +
N∑

i=1

λiΩi +
N,N∑

i,j=1

λiλjΩij ≺ 0 (5.41)
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holds for all λi such that
∑N

i=1 λi = 1, λi(t) ≥ 0, λ̇ ∈ Us and where

Ω0 =




−Y H 0 0 0 0 Y hmaxR̃

? Ũ0
22(λ̇) R̃ 0 0 0 0

? ? Ũ0
33 0 0 0 0

? ? ? −γIp 0 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? 0 −hmaxR̃
? ? ? ? ? ? −R̃




Ωi =




0 P̃i +AiY AhiY Ei 0 0 0
? Ũ i22 0 0 [CiY ]T 0 0
? ? 0 0 CThi 0 0
? ? ? 0 F Ti 0 0
? ? ? ? 0 0 0
? ? ? ? ? −P̃i 0
? ? ? ? ? ? 0




Ωij =




0 BiVj 0 0 0 0 0
? 0 0 0 [DiVj ]T 0 0
? ? 0 0 0 0 0
? ? ? 0 0 0 0
? ? ? ? 0 0 0
? ? ? ? ? 0 0
? ? ? ? ? ? 0




(5.42)

with

Ũ22(λ̇)0 =
N∑

i=1

λ̇i(t)Pi + Q̃− R̃

Ũ i22 = −Pi + Q̃− R̃
Ũ33 = −(1− µ)Q̃− R̃

In this case, the controller matrices are given by Ki = ViY
−1 and the closed-loop system

satisfies ||z||L2 ≥ γ||w||L2.

Proof : Consider the following Lyapunov-Krasovskii functional

V (xt, ẋt) = V 1(xt) + V 2(xt) + V 3(ẋt)
V 1(xt) =

∑N
i=1 x(t)TPix(t)

V 2(xt) =
∫ t
t−h(t) x(θ)TQx(θ)dθ

V 3(xt) =
∫ 0
−hmax

∫ t
t+θ ẋ(η)T (hmaxR)x(η)dηdθ

(5.43)

Since the form is very similar to the Lyapunov-Krasovskii functionals developed in Section
3.5, get the following LMI

Ω0 +
N∑

i=1

λiΩi +
N,N∑

i,j=1

λiλjΩij ≺ 0 (5.44)
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which is the polytopic LPV counterpart of LMI (3.109) on which a congruence transformation
with respect to the matrix diag(Y, Y, Y, I, I, Y, Y ) with Y = X−1 and the change of variable
Vi = KiY have been performed. �

We are confronted here in a particular type of parameter dependent LMI. It is possible
to use a gridding approach to verify its negative definiteness condition but in the polytopic
framework it is of habit to relax the parameter dependent LMI and express it as a finite set of
LMIs. Actually, this is possible exactly if the dependence on the parameter is affine. In the
current case, the relation is quadratic and in this case a common but conservative relaxation
is to fix all the terms Ωij to be negative semidefinite and hence a relaxation is to consider
only vertices of the polytope. However, in our case the matrices Ωij cannot be defined as
negative semidefinite due to their structure and hence this relaxation cannot work. This can
be viewed by considering the scalar case, Bi = bi, Vj = vj and Di = di. After removing the
zero columns/lines of Ωij we get the matrix




0 bivj 0
bivj 0 divj

0 divj 0




The characteristic polynomial is given by χ(s) = s3−v2
j (b

2
i +d2

i )s and exhibit zeroes at values

{−vj
√
b2i + d2

i , 0, vj
√
b2i + d2

i }. Since one of them is positive hence the matrix Ωij � 0 and
this shows that in the general case Ωij cannot be negative semidefinite.

On the other hand, relaxations like SOS-relaxation, polynomial optimization and lin-
earization approaches can be employed and induce a small degree of conservatism. The
reader should refer to sections 3.2 and 1.3.3.1 to get more explanations on these approaches.
We have chosen to illustrate here only one of them which we call the linearization approach
which is detailed in Section 3.2.

The principle is to turn the initial parameter dependent LMI into a new LMI involving
’slack’ variables which has a linear dependence on the parameters. The new LMI is not
equivalent to the first one but is usually very near which makes this relaxation a useful tool
for linearization of polynomially parameter dependent LMIs. We obtain the following result:

Theorem 5.1.13 There exists a state-feedback control law of the form u(t) =
∑N

i=1Kix(t)
which asymptotically stabilizes the system (5.37) for all h ∈ H ◦

1 if there exist matrices
P̃i, Q̃, R̃ ∈ Sn++, Y ∈ Rn×n, Vi ∈ Rm×n, a scalar γ > 0 and a matrix Z such that the LMIs

K̃ + ZTΠ(λ) + Π(λ)TZ < 0 (5.45)

hold for all (λ, λ̇) ∈ Λ× Us and where

Π(λ) =




−λ1I I 0 . . . 0
−λ2I 0 I . . . 0

...
...

. . . 0
−λN−1I 0 0 . . . I




K̃ =




Ω0 Ω1/2 . . . ΩN−1/2
? Ω11 . . . Ω1(N−1)/2
...

...
. . .

...
? ? . . . Ω(N−1)(N−1)



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with K0 = Ω0 + ΩN + ΩNN , Ki = Ωi − ΩN + 2ΣiN − 2ΩNN , Kij = Ωij − 2ΣNi + ΩNN ,
Ωij = (Ωij + Ωji)/2 and Σij = (Ωij + Ωji)/2.

In this case suitable controller matrices are given by Ki = ViY
−1 and the closed-loop

system satisfies ||z||L2 ≥ γ||w||L2

Proof : This is a straightforward application of Corollary 3.2.2 to LMI (5.41). �
In some cases, system (5.37) is a polytopic parametrization of a physical system and the

polytopic formulation is not natural in the sense that physical parameters are hidden in this
parametrization. In such a case, it may be difficult to determine the set Us exactly. The
method exposed in Section 3.4 allows to compute systematically these bounds through a
simple linear algebraic approach.

5.1.5 Hereditary State-Feedback Controller Design - exact delay value
case

We consider in this section the design of state-feedback control laws embedding a delayed
information:

u(t) = K0(ρ)x(t) +Kh(ρ)x(t− h(t)) (5.46)

It is clear that such a control law should lead to better results than by considering a
control law based on the current state only. We will consider first that the delay used in the
controller is identical to the delay involved in the system dynamical model. The next section
will be devoted to the case when the delay of the controller and the system are different.

The approach of this section is similar as for memoryless state-feedback control laws
(see Theorem 5.1.3 for a similar proof). First of all, a generic stability/performances result
based on a Lyapunov-Krasovskii functional is developed. This result is then relaxed in order
to remove coupled terms and finally the closed-loop system is substituted in this matrix
inequality. Finally, congruence transformations and change of variables are performed in
view of linearizing the matrix inequality.

Theorem 5.1.14 There exists a stabilizing control law of the form (5.46) for system (5.1)
with h ∈ H ◦

1 if there exists a continuously differentiable matrix function P̃ : Uρ → Sn++,
matrix functions V0, Vh : Uρ → Rm×n, constant matrices Q̃, R̃ ∈ Sn++, Y ∈ Rn×n, a constant
scalar γ > 0 and a scalar function ε : Uρ → R++ such that the LMI

[
Ψ(ρ, ν) + ε(ρ)G(ρ)TG H(ρ)T

? −ε(ρ)I

]
≺ 0 (5.47)
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holds for all (ρ, ν) ∈ Uρ × Uν where Ψ(ρ, ν) is defined by




−(Y + Y T ) U12(ρ) U13(ρ) E(ρ) 0 Y hmaxR̃

? Ũ22(ρ, ν) R̃ 0 U25(ρ) 0 0
? ? Ũ33 0 U26(ρ) 0 0
? ? ? −γIp F (ρ)T 0 0
? ? ? ? −γIq 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃




U12(ρ) = P̃ (ρ) +A(ρ)Y +B(ρ)V0(ρ)
U13(ρ) = Ah(ρ)Y +B(ρ)Vh(ρ)
U25(ρ) = Y TC(ρ)T + [D(ρ)V0(ρ)]T

U26(ρ) = Y TCh(ρ)T + [D(ρ)Vh(ρ)]T

G(ρ) =
[
G(ρ)T 0 0 0 0 0 0

]

H =
[

0 HA(ρ)Y +HB(ρ)V0(ρ) HAh
(ρ)Y +B(ρ)Vh(ρ) HE(ρ) 0 0 0

]

Ũ22(ρ, ν) = −P̃ (ρ) + Q̃− R̃+ ∂ρP̃ (ρ)ν
Ũ33 = −(1− µ)Q̃− R̃

Moreover a suitable control gains are given by K0(ρ) = V0(ρ)Y −1 and Kh(ρ) = Vh(ρ)Y −1 and
the closed-loop satisfies ||z||L2 < γ||w||L2

5.1.6 Hereditary State-Feedback Controller Design - approximate delay
value case

This section is devoted to the design of control of the form (5.2) in which the delay d(t) is
different from the delay h(t) of the system. In this case, we have the following control law:

u(t) = K0(ρ)x(t) +Kh(ρ)x(t− d(t)) (5.48)

The approach is still similar to the others, the main difference lies in the choice of the
Lyapunov-Krasovskii functional to consider. Since the closed-loop will have two delays (the
system and controller one) which are coupled together by the algebraic equality d(t) = h(t) +
ε(t) where |ε(t)| ≤ δ. The fact that these delays have a relation is the main difficulty of
the approach. However, with an appropriate choice of the Lyapunov-Krasovskii functional it
is possible to consider this relation. This is done by using the Lyapunov-Krasovskii defined
in Section 3.7 and the remaining of the method is identical as for previous ones: relax the
inequalities in order to remove coupled terms then substitute the closed-loop system into the
inequalities. Finally, linearize the problem through congruence transformations and changes
of variables.

Theorem 5.1.15 There exists a state-feedback control law of the form (5.48) if there exist
a continuously differentiable matrix function P : Uρ → Sn++, matrix functions V0, Vh : Uρ →
Rm×n, Q̃1, Q̃2, R̃1, R̃2 ∈ Sn++, a scalar γ > 0 and a scalar function ε : Uρ → R++ if the
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following LMIs




U11(ρ) U12(ρ) U13(ρ) E(ρ) 0 X̃ hmaxR̃1 R̃2 0
? U22(ρ, ν) R̃1 0 U25(ρ) 0 0 0 U29(ρ)
? ? U33 0 U35(ρ) 0 0 0 U39(ρ)
? ? ? −γI F (ρ)T 0 0 0 HE(ρ)T

? ? ? ? −γI 0 0 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃1 −R̃2 0
? ? ? ? ? ? −R̃1 0 0

? ? ? ? ? ? ? −R̃2

2δ
0

? ? ? ? ? ? ? 0 −ε(ρ)I




≺ 0

(5.49)




Π11(ρ, ν) Π12(ρ) Π13(ρ)
? Π22(ρ) 0
? ? −ε(ρ)I


 ≺ 0 (5.50)

hold for all (ρ, ν) ∈ Uρ × Uν where

U11(ρ) = −X̃(ρ)H + ε(ρ)G(ρ)G(ρ)T

U12(ρ) = P̃ (ρ) +A(ρ)X̃ +B(ρ)V0(ρ)
U13(ρ) = Ah(ρ)X̃ +B(ρ)Vh(ρ)

U22(ρ, ν) = −P̃ (ρ) + Q̃1 + Q̃2 +
N∑

i=1

∂P̃

∂ρi
νi − R̃1

U33 = −(1− µ)(Q̃1 + Q̃2)− R̃1

U25(ρ) = U25(ρ)[C(ρ)X̃ +D(ρ)V0(ρ)]T

U29(ρ) = [HA(ρ)X̃ +HB(ρ)V0(ρ)]T

U35(ρ) = [Ch(ρ)X +D(ρ)Vh(ρ)]T

U39(ρ) = [HAh
(ρ)X̃ +HB(ρ)Vh(ρ)]T

Π11(ρ, ν) is defined by




−X̃(ρ)H + ε(ρ)G(ρ)G(ρ)T P̃ (ρ) +A(ρ)X̃ +B(ρ)V0(ρ) Ah(ρ)X̃ B(ρ)Vh(ρ) E(ρ)
? Θ̃11(ρ, ν) R̃1 0 0
? ? Ψ̃22 (1− µ)R̃2/δ 0
? ? ? Ψ̃33 0
? ? ? ? −γI



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and

Π12(ρ) =




0 X̃(ρ) hmaxR̃1 R̃2[
C(ρ)X̃ +D(ρ)V0(ρ)

]T
0 0 0

[
Ch(ρ)X̃

]T
0 0 0

[D(ρ)Vh(ρ)]T 0 0 0
F (ρ)T 0 0 0




Π13(ρ) =




0[
HA(ρ)X̃ +HB(ρ)V0(ρ)

]T

0
[HB(ρ)Vh(ρ)]T

0




Π22(ρ) =




−γI 0 0 0
? −P̃ (ρ) −hmaxR̃1 −R̃2

? ? −R̃1 0

? ? ? −R̃2

2δ




Ψ̃22 = −(1− µh)(Q̃1 + R̃2/δ)− R̃1

Ψ̃33 = −(1− µd)Q̃2 − (1− µ)R̃2/δ

5.1.7 Delay-Scheduled State-Feedback Controllers

This section is devoted to the development of a new methodology to control time-delay systems
with time-varying delays provided that the delay can be measured or estimated in real-
time. The difference between state-feedback with memory and delay-scheduled state-feedback
controllers comes from the fact that the former uses the delayed state into the control law
expression while the latter uses only the instantaneous state. On the other hand, while the
former uses constant gains (in the LTI case), the latter involves a matrix gain which varies
in time with respect to the value of the delay, as seen in the LPV framework when gain-
scheduling controllers are designed. Hence, a delay-scheduled state-feedback control law is
defined by

u(t) = K(ĥ)x(t) (5.51)

Since the gain scheduling technique is a well-established method in the LPV framework
through different approaches such as LPV polytopic systems, polynomial systems and ’LFT’
systems , it seems necessary to develop an equivalence (at the best) between LPV systems
and time-delay systems. This section will consider the following LTI time-delay system

ẋ(t) = Ax(t) +Ah(t− h(t)) +Bu(t) + Ew(t)
z(t) = Cx(t) + Chx(t− h(t)) +Du(t) + Fw(t)

(5.52)

where x ∈ Rn, u ∈ Rn, w ∈ Rp, z ∈ Rq are respectively the system state, the control input,
the exogenous inputs and the controlled outputs.
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In [Briat et al., 2007a], a model transformation has been introduced in order to turn a
time-delay system into an uncertain LPV system. However, this model transformations suffer
from two main problems: the first one was that operator cannot consider zero delay values
and the second one is the conservatism induced by the computation of the L2-induced norm
of that operator. The model transformation presented here authorizes zero delay values and
the L2-induced norm is tighter.

Let the operator

Dh : L2 → L2

η(t) → 1√
h(t)hmax

∫ t

t−h(t)
η(s)ds (5.53)

This operator enjoys the following properties:

1. Dh is L2 − L2 stable.

2. Dh has an induced L2 − L2 norm lower than 1.

Proof : Let us prove first that for a L2 input signal we get a L2 output signal. Assume
that η(t) is continuous and denote by ηp(t) the signal satisfying dηp(t)/dt = η(t) then we have

Dh(η(t)) =
ηp(t)− ηp(t− h(t))√

h(t)hmax
(5.54)

Note that as h(t) is always positive then (5.54) is bounded since η(t) is continuous and belongs
to L2 (and hence to L∞). The main problem is when the delay reaches 0. Suppose now that
there exist a (possibly infinite) family of time instants ti+1 > ti ≥ 0 such that h(ti) = 0. Since
ηp(t) is continuously differentiable and hence we have

limt→ti
ηp(t)− ηp(t− h(t))√

h(t)hmax
=

√
h(ti)
hmax

η(ti)

As η(t) is continuous and belongs to L2, we can state that η(ti) is always finite and then the
output signal remains bounded even if the delay reaches zero. This proves that Dhhas a finite
L∞-induced norm (no singularities). Let us prove now that it has a finite induced L2-norm
using a similar method as in Gu et al. [2003]:

||Dh(η)||2L2
:=
∫ +∞

0

dt

h(t)hmax

∫ t

t−h(t)
ηT (θ)dθ ·

∫ t

t−h(t)
η(θ)dθ

Then using the Jensen’s inequality (see [Gu et al., 2003]) we obtain

||Dh(η)||2L2
≤
∫ +∞

0

dt

hmax

∫ t

t−h(t)
ηT (θ)η(θ)dθ (5.55)

To solve the problem we will exchange the order of integration under the assumption η(θ) = 0
when θ ≤ 0. First note that the domain is contained in t− hM ≤ θ ≤ t, θ ≥ 0 and is bounded
by lines θ = t and θ = p(t) := t − h(t). Since p(θ) is a non-decreasing function then the set
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of segments where θ = p(t) is constant is countable. Hence for almost all θ the function p(t)
is increasing and the inverse t = q(θ) := p−1(θ) := is well-defined and then we have

||Dh(η)||2L2
≤ 1

hmax

∫ +∞

0
ηT (θ)η(θ)dθ

∫ q(θ)

θ
dt

=
1

hmax

∫ +∞

0
ηT (θ)η(θ)(q(θ)− θ)dθ

Hence using the fact that θ = t − h(t) and that t = q(θ) then we have the equality θ =
q(θ)− h(q(θ)) and hence we have q(θ)− θ = h(q(θ)). This leads to

||Dh(η)||2L2
≤ 1

hmax

∫ +∞

0
ηT (θ)η(θ)h(q(θ))dθ

≤ ||η||2L2

We have then proved that Dhdefines a L2−L2 stable operator with an L2-induced norm lower
than 1. �

We show now how to use this operator to transform a time-delay system into a uncertain
LPV system. Consider system (5.52) and note that xh(t) = x(t − h(t)) = Dh(ẋ(t)) then
substituting into system (5.52) and once expressed into a LFT form we obtain then

ẏ(t) = Āy(t)− α(t)Ahw0(t) +Buu(t) + Ew(t)
z0(t) = ẏ(t)
z(t) = C̄y(t)− α(t)Chw0(t) +Duu(t) + Fw(t)
w0(t) = Dh(z0(t))
Ā = A+Ah
C̄ = C + Ch

(5.56)

where α(t) =
√
h(t)hM and y(t) is the new state of the system emphasizing that the trans-

formed model is not always equivalent to the original one.
This system is then obviously:

• uncertain due to the presence of the ”unknown” structured norm bounded LTV dynamic
operator Dh. For this part we will use results of robust stability analysis and robust
synthesis.

• parameter varying (even affine in α(t)). We will use parameter dependent Lyapunov
functions to tackle this time-varying part.

It is clear that this system is not equivalent to (5.52) due to the model transformation
inducing additional dynamics (see [Gu et al., 2003]). Just note that additional dynamics may
be a source of conservatism in stability analysis. Nevertheless, in the stabilization problem
this is less problematic since we aim to stabilize the system and hence we stabilize these
additional dynamics (assuming they are stabilizable).

Before introducing the main results of this section based on this model transformation it
is necessary to introduce the following sets

H := [hmin, hmax]
U := [µmin, µmax]
Ĥ := [hmin − δ, hmax + δ]
Û := [µmin − νmin, µmax + νmax]
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The set H corresponds to the set of values taken by the delay, the set U defines the set of
values taken by the delay derivative. The sets Ĥ and Û represent respectively the set of values
taken by the measured delay and its derivative. It is worth mentioning that the measurement
error belongs to [−δ, δ] while its derivative remains within [νmin, νmax].

5.1.7.1 Stability and L2 performances analysis

This section is devoted to the stability analysis of the transformed system using robust and
LPV stability analysis tools. The robustness with respect to the operator Dh will be ensured
using the full-block S-procedure [Scherer, 2001] while the stability with respect to the pa-
rameter varying part will be tackled using a parameter dependent Lyapunov function. The
full-block S-procedure is used with parameter dependent D-G scalings, D(·) and G(·) being
the decision variables, as shown below:

Lemma 5.1.16 System (5.56) without control input (i.e. u(t) = 0) is asymptotically stable
for h ∈ H and satisfies the H∞-norm property ||z||2/||w||2 < γ(h, ḣ) if there exist a smooth
matrix function P : H → Sn++, matrix functions D : H × U → Sn++, G : H × U → Kn and a
function γ : H × U → R++ such that the LMI



[ĀTP (h)]H + dP
dh ḣ −αP (h)Ah + ĀTG(h, ḣ) P (h)E C̄T ĀTD(h, ḣ)

? −D(h)− [αAThG(h, ḣ)]H GT (h, ḣ)E −αCTh −αAThD(h, ḣ)
? ? −γ(h, ḣ)Ip F T ETD(h, ḣ)
? ? ? −γ(h, ḣ)Iq 0
? ? ? ? −D(h, ḣ)



≺ 0

(5.57)
holds for all h ∈ H and ḣ ∈ U with α =

√
hmaxh.

Proof : Let us consider system (5.56), it is possible to apply the full-block S-procedure in
order to develop an efficient stability test. Combining with L2 performances we obtain the
following LMI 



∂P

∂h
ḣ+ ĀTP (h) + P (h)Ā −αPAh PE

? 0 0
? ? −γ(h, ḣ)I




+




0 ĀT

I −αATh
0 ET


f(h, ḣ)

[
0 I 0
Ā −αAh E

]

+γ−1(h, ḣ)




C̄T

−αATh
F T






C̄T

−αATh
F T



T

< 0

(5.58)

where f(h, ḣ) satisfies

∫ t

0

[
Dh(η)
In

]T
f(h, ḣ)

[
Dh(η)
In

]
ds > 0 for all η ∈ L2 (5.59)

The separator f(h, ḣ) = f∗(h, ḣ) is chosen following the following facts:
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• As ||Dh||∞ < 1 then Dh may satisfy

∫ t

0

[
Dh(η)
In

]T [ −1 0
0 1

]

︸ ︷︷ ︸
f1

[
Dh(η)
In

]
ds > 0 for all η ∈ L2 (5.60)

• The uncertain operator Dh acts entrywise (scalar and repeated diagonally) then it sat-
isfies: ∫ t

0

[
Dh(η)
In

]T [ 0 −i
i 0

]

︸ ︷︷ ︸
f2

[
Dh(η)
In

]
ds = 0 for all η ∈ L2 (5.61)

Hence a set of separators can be parametrized as f = f1 ⊗D + f2 ⊗ G where D = D∗ > 0
and arbitrary G = G∗. But the set of separators is limited to be hermitian and the signal are
real valued then the separator becomes

f(h, ḣ) :=
[
−D(h, ḣ) GT (h, ḣ)

? D(h, ḣ)

]
(5.62)

where D : H × U → Sn++ and G : H × U → Kn. Then expand (5.58) and perform a Schur
complement on quadratic term

−




C̄T ĀTD(h, ḣ)
−αCh −αAhD(h, ḣ)
F ETD(h, ḣ)



[
−γ−1(h, ḣ)Iq 0

0 −D−1(h, ḣ)

]
(?)T

leads to inequality (5.57). �
The LMI provided by the latter theorem can be easily solved using classical LMI solvers.

Moreover, if the parameter dependence is linear then a polytopic relaxation will be exact.
However, if the dependence is polynomial then a more complex relaxation scheme should be
adopted. For more details about these relaxations, the readers should refer to Sections 1.3.3.2,
1.3.3.3, 1.3.3.4 and 3.2.

5.1.7.2 Delay-Scheduled state-feedback design

We provide in that section the computation of a delay-scheduled state-feedback of the form
(5.51) for system (5.52). In this case, the closed-loop system is then given by

ẏ(t) = Ācl(h, δh)y(t)−Ahα(t)w0(t) + Ew(t)
z(t) = C̄cl(h, δh)y(t)− Chα(t)w0(t) + Fw(t)
z0(t) = ẏ(t)
w0(t) = Dh(z0(t))

(5.63)

with ĥ = h + δh, a state feedback of the form K(h + δh) and closed-loop system matrices
Ācl(h, δh) = Ā+BuK(ĥ), C̄cl(h, δh) = C̄ +DuK(ĥ).

As shown in previous sections, there exist several ways to compute this controller:
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1. Use an approach involving congruence transformations and change of variable. Using
this approach, it is possible to fix a desired form to the controller.

2. Elaborate a stabilizability test (independent of the controller) based on the projection
lemma (see Appendix E.18). A suitable controller is then deduced either through a LMI
problem or an explicit algebraic equality.

We will only provide here a solution based on a change of variable but a solution based
on the projection lemma can also be employed (see Section 5.1.1 for details, differences and
interests of these approaches). This approach allows us to fix the controller structure which
can be independent of the delay derivative. However, the result may be conservative since it
is difficult to choose adequately the controller structure. The approach using the projection
lemma is interesting in the sense that it allows to compute the best L2 performances gain
that can be reached using this approach but the controller which is computed from algebraic
equations will depend on the delay-derivative.

Theorem 5.1.17 The system (5.56) is stabilizable with a delay-scheduled state feedback K(ĥ) =
Y (ĥ)X−1(ĥ) if there exists a smooth matrix function X : Ĥ → Sn++, matrix functions
Y : Ĥ → Rm×n, D̃ : H × U × Ĥ × Û → Sn++, G̃ : H × U × Ĥ × Û → Kn and a scalar
function γ : H × U × Ĥ × Û → R++ such that the LMI




U11(ĥ, ˙̂
h) U12(ĥ) U13(ĥ, ˙̂

h) αAhD̃(ξ) E

? −γ(ξ)Iq αChG̃
T (ξ) + C̄X(h) αChD̃(ξ) F

? ? − ˙̂
h
∂X(ĥ)

∂ĥ
− D̃(ξ) 0 0

? ? ? −D̃(ξ) 0
? ? ? ? −γ(ξ)Ip



≺ 0 (5.64)

holds for all h ∈ H, ḣ ∈ U , δh ∈ ∆ and δ̇h ∈ ∆ν , where ξ = col(h, δh, ḣ, δ̇h) and

U11(ĥ, ˙̂
h) = − ˙̂

h
∂X(ĥ)

∂ĥ
+ [X(ĥ)ĀT + Y T (ĥ)BT

u ]H

U12(ĥ) = X(ĥ)C̄T + Y T (ĥ)DT
u

U13(ĥ, ˙̂
h) = − ˙̂

h
∂X(ĥ)

∂ĥ
+ ĀX(ĥ) + αAhG̃

T (ξ)

K(ĥ) = Y (ĥ)X(ĥ)−1

Proof : First note that the real unknown delay is h(t) and the estimated one is ĥ(t) =
h(t) + δh(t). X must depend on ĥ(t) only since the controller gain is a function of X.
Indeed, if X depends on h(t) hence the controller would depend on h(t) which is not possible
since h(t) is unknown. Nevertheless, other variables may depend on all the parameters (i.e.
h(t), δh(t), ḣ(t), δ̇h(t)). From here let ξ = col(h, δh, ḣ, δ̇h) for simplicity. First note that LMI
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(5.58) can be rewritten in the following form

(?)TM(h, ḣ)




I 0 0
Ā −αAh E

0 I 0
Ā −αAh E

0 0 I
C̄ −αCh F




︸ ︷︷ ︸
S

< 0 (5.65)

where M(h, ḣ) =


 ḣ

dP (h)
dh

P (h)

P (h) 0


⊕f(h, ḣ)⊕ [−γ(h, ḣ)Ip]⊕ [γ−1(h, ḣ)Iq]. First inject the

closed-loop system into (5.65). Note that dim(M) = 4n+ p+ q and n−(M) = 2n+ p (where
n−(M) is the number of strictly negative eigenvalues of the symmetric matrix M , n = dim(x),
p = dim(w) and q = dim(z)) and the latter equals the rank of the subspace S (defined in
(5.65)). Then it is possible to apply the dualization lemma and we obtain

(?)TM−1(ξ)




−ĀTcl(ĥ) −C̄T (ĥ) 0
In 0 In
αATh αCTh 0

0 0 −In
−ET −F T 0

0 Iq 0




︸ ︷︷ ︸
S+

> 0 (5.66)

where M−1(ξ) =

[
dP (ĥ)
dt P (ĥ)
? 0

]−1

⊕ f−1(ξ)⊕ [−γ−1(ξ)]⊕ [γ(ξ)].

Let X = P−1 and then
dX(ĥ)
dt

= −XdP (ĥ)
dt

X, we have

[
dP (ĥ)
dt P (ĥ)
? 0

]−1

=

[
0 X(ĥ)

? dX(ĥ)
dt

]
.

Denote also f−1(ξ) =
[
−D̃(ξ) G̃T (ξ)
? D̃(ξ)

]
with D̃ ∈ Sn++ and G̃ ∈ Kn. Moreover f−1(·)

satisfies the inequality
[
−In
DTh (·)

]T [ −D̃(ξ) G̃T (ξ)
? D̃(ξ)

] [
−In
DTh (·)

]
< 0 (5.67)

Then expand (5.66) and noticing that R̃(h, ḣ) < 0, the Schur complement can be used on the
quadratic term:

−



αAhD̃ E

αChD̃ F
0 0



[
D̃−1 0

0 γ−1(ξ)Ip

]
(?)T (5.68)

Finally multiplying the LMI by -1 (to get a negative definite inequality) we obtain inequality
(5.64) in which Y (ĥ) = K(ĥ)X(ĥ) is a linearizing change of variable. �

We have expressed the stability and stabilizability problems as polynomially parametrized
LMIs (5.57) and (5.64). Moreover the L2-induced norm is expressed as a positive function of
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the parameters and its minimization is not a well-defined problem since we cannot minimize
a function. We detail in the following how to turn this problem into a tractable one.

Since the cost to be minimized needs to be unique for every parameters, the idea is here,
to provide an idea on how to turn the semi-infinite number of cost (defined for each value of
the parameters) into a single one. This step is performed by an integration procedure with
respect to some specific measure.

Let us illustrate this on the elementary cost γ(ξ), ξ = col(h, δh, ḣ, δ̇h). It is possible to
define several ’general’ costs J (·):

Jθ(γ) :=
∫

H×U×H̄×Û
γ(ξ)dθξ (5.69)

where dθ(ξ) is a probability measure over H × U × H̄ × Û (i.e.
∫

H×U×H̄×Û
dθξ = 1).

We propose here some interesting values of the measure dθ(·, ·):

• dθ1(ξ) = µ(H × U × H̄ × Û)−1 where µ(·) is the Lebesgue measure.

• dθ2(ξ) = δ(
∏f
i=1(ξ − ξi)) with δ(t) is the Dirac distribution.

• dθ3(ξ) = p(ξ) where p(·) denotes for instance a probability density function.

The first one minimizes the volume below the hypersurface defined by the application
γ : H × U × H̄ × Û → R+ with equal preference for any parameter values. The second
one aims to minimize the H∞-norm, specifically for certain delay, errors and their derivative
values. This may be interesting for systems with discrete valued delays. The third one
is dedicated when we have a stochastic model of the delay (and eventually a model for its
derivative) attempts for instance to minimize in priority the H∞-norm for high probable delay
values.

Example 5.1.18 We aim to stabilize the following time delay system with time-varying delay

ẋ(t) =
[

11 23
14 16

]
x(t) +

[
15 18
12 23

]
xh(t) +

[
12
0

]
u(t)

+
[

11
22

]
w(t)

z(t) =
[

1 0
0 0

]
x(t) +

[
0

0.1

]
u(t)

(5.70)

with h(t) ∈ [0, 5], |ḣ| ≤ 0.2, δ̇h, δh ∈ [−0.1, 0.1]. We choose a constant γ > 0 and constant
scaling (i.e. constant D̃, G̃). We compute three different controllers using Theorem 5.1.17: a
constant feedback, a linear state-feedback (i.e. K(ĥ) = K0+K1ĥ) and a rational state-feedback
(i.e. K(ĥ) = (Kn0 + Kn1ĥ)(Kd0 + Kd1ĥ)−1). The results are summarized in table 5.1. We
can see that in this example, taking a constant or linearly dependent controller does not lead
to a better closed-loop H∞-norm. Nevertheless, taking a rationally dependent controller leads
to a better H∞-norm for the closed-loop system. This happens for two main reasons:

1. The controller have a more complex form

2. Through the use of a parameter dependent Lyapunov matrix, the information on the
delay-derivative is embedded and then reduce the conservatism.
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controller γ

constant 19.4055
linear 19.4055
rational 15.5030

Table 5.1: Minimal H∞-norm of the closed-loop system

5.2 Dynamic Output Feedback Control laws

This section is devoted to the stabilization of time-delay systems by output-feedback. Two
different laws will be analyzed: the first one is called ’observer based control law’ which means
that the controller is composed by an observer which estimate the system state and a state-
feedback control law which generate the control input from the estimated state. The second
type is a direct approach where the controller is a full-block and all the matrices are sought
such that the closed-loop system is asymptotically stable.

The main difficulty in the synthesis of observer-based control laws is the fact that, first of
all, it is not possible to exactly linearize the conditions by congruence transformations and
change of variables due to a low number of degrees of freedom (two for observer based-control
laws). However, the obtained controller is rather simple and then easy to implement.

In the full-block output-feedback control law framework, congruence transformations and
change of variable are possible. Moreover, this approach leads to exact LMI conditions when
dealing with output-feedback with memory (when the delay is exactly known). Nevertheless,
such a case almost never occurs since the delay is generally not exactly known except in
some vary special cases (for instance when the delay represents a variable sampling period
[Fridman et al., 2004, Suplin et al., 2007]). This is the reason why memoryless controller
are often preferred but are more difficult to design due to the presence of bilinear terms
(non-linearizable) in the resulting conditions.

In [Sename and Briat, 2006], the problem of finding a observer-based control law for LTI
time-delay systems is derived through iterative LMI conditions. The result is provided in
the delay-independent framework only. This section will consider delay-dependent results
only and in both memoryless and with memory types. It is also possible to elaborate delay-
scheduled dynamic output feedback control laws based on the approach detailed in Section
5.1.7 but tractable conditions can only be obtained using more simple scalings than D-G
scalings. Otherwise, iterative LMI conditions procedure would deal with such problems in
which matrices and their inverse coexist in the same problems. This will not be treated in
the current thesis.

5.2.1 Memoryless observer based control laws

This section aims at developing sufficient conditions to the existence of a memoryless observer-
based control law of the form

ξ̇(t) = A(ρ)ξ(t) +B(ρ)u(t) + L(ρ)(y(t)− Cy(ρ)ξ(t))
u(t) = −K(ρ)ξ(t)

(5.71)
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for LPV time-delay systems

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) +D(ρ)u(t) + F (ρ)w(t)
y(t) = Cy(ρ)x(t) + Fy(ρ)w(t)

(5.72)

where x ∈ Rn, ξ ∈ Rn, u ∈ Rm, y ∈ Rp, w ∈ Rq and z ∈ Rr are respectively the system state,
the controller state, the control input, the measured output, the exogenous inputs and the
controlled outputs. The delay h(t) is assumed to belong to the set H ◦

1 and the parameters
ρ ∈ Uν with ρ̇ ∈ hull[Uν ].

In such a case, the closed-loop system can be expressed by the equations
[
ė(t)
ẋ(t)

]
=

[
A(ρ)− L(ρ)Cy(ρ) 0

B(ρ)K(ρ) A(ρ)−B(ρ)K(ρ)

] [
e(t)
x(t)

]

+
[

0 Ah(ρ)
0 Ah(ρ)

] [
e(t− h(t))
x(t− h(t))

]
+
[
E(ρ)− L(ρ)Fy(ρ)

E(ρ)

]
w(t)

(5.73)

and we define an extended output vector z̃(t) =
[
Te(t)
z(t)

]
with T full row rank.

The role of the matrix T is to weight the observation error in order to reduce the impact
of the disturbances on the observation error.

Before introducing the main result of the section, known methodologies will be briefly
introduced here. A common methodology is to assume that the Lyapunov matrix multiplied
with system matrices are block-diagonal and each block corresponds to a specific part of the
augmented system (i.e. the observation error and the system-state).

It is worth mentioning that since the design matrices K(ρ) and L(ρ) are not multiplied
in the same fashion with system matrices (L(ρ) is free from the left while K(ρ) is free from
the right) then this suggests that congruence transformations would lead to nonlinear terms
with possibility of linearization. Hence a commutation approach has been introduced (see for
instance [Chen, 2007]) where a block of Lyapunov matrix is constrained such that it commutes
with a system matrix in order to linearize the equations. For instance, the matrix X is
constrained such that it commutes with the matrix Cy, i.e. CyX = X̂Cy where rank[Cy] = p.
In this case, the change of variable L̂ = LX̂ is allowed but this considerably increases the
conservatism of the approach. Actually, this approach has been introduced to deal with the
static-output feedback design [Daafouz et al., 2002]. Moreover, it appears difficult when the
observer gain appears in different places (e.g. A− LCy and E − LFy) since in this case it is
not possible to linearize the equations. In our case, this method cannot be applied since the
measured output depends on the disturbances.

In the presented method no congruence transformations are applied but we use a simple
approach to bound nonlinear terms. The methodology is the following: first of all a correct
Lyapunov-Krasovskii functional is chosen. The LMI conditions are then relaxed in order to
remove all the coupled terms and then the extended system expression is substituted into.
Finally ’annoying’ (nonlinear) terms are then bounded in order to get finally easily tractable
LMI conditions.

Theorem 5.2.1 There exist an observer-based control law of the form (5.71) which asymptot-
ically stabilizes system (5.72) for all h ∈H ◦

1 if there exist a continuously differentiable matrix
P : Uρ → Sn++, matrix functions X0, Xc : Uρ → Rn×n, K : Uρ → Rm×n, Lo : Uρ → Rn×p,
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constant matrices Q,R ∈ Sn++, scalar functions α1, α2 : Uρ → R++ and a constant scalar
γ > 0 such that the following LMI




−(X +XT ) Ω2(ρ)T Ω3(ρ)T Ω5(ρ)T

? Ω4(ρ, ρ̇) Ω6(ρ)T 0 ΩT
c

? ? Ω8(ρ) 0
? ? ? Ω10(ρ)

? −Ωd



≺ 0 (5.74)

holds for all (ρ, ν) ∈ Uρ × Uν where

Ω2(ρ) =



P (ρ) +

[
A(ρ)TXo(ρ)− Cy(ρ)TLo(ρ)T 0

0 A(ρ)TXc

]

[
0 0

Ah(ρ)TXo(ρ) Ah(ρ)TXc(ρ)

]




Ω3(ρ) =




E(ρ)TXo(ρ)− Fy(ρ)TLo(ρ)T

E(ρ)TXc(ρ)
0
0




Ω5(ρ) =
[

X
hmaxR

]

Ω6(ρ) =




0 0 0 0
0 0 0 0
T 0 0 0

D(ρ)K(ρ) C(ρ)−D(ρ)K(ρ) 0 Ch(ρ)




Ω8(ρ) =
[
−γ(ρ)Iw F (ρ)T

? −γ(ρ)Iz

]

Ω10(ρ) =
[
−P (ρ) −hmaxR
? −R

]

Ωc(ρ) =




0 0 0 0
α1(ρ)Xc(ρ)TB(ρ) α1(ρ)Xc(ρ)TB(ρ) 0 0

0 0 K(ρ)T 0
0 0 0 K(ρ)T

0 0
0 0
0 0
0 0




Ωd(ρ) =




α1(ρ)I 0 0 0
? α2(ρ)I 0 0
? ? α1(ρ)I 0
? ? ? α2(ρ)I




Moreover the observer gain L(ρ) = Xo(ρ)−TLo(ρ) and the closed-loop satisfies ||z̃||L2 ≤
γ||w||L2.

Proof : First of all we assume that the matrix X is structured as follows:

X = diag(Xo, Xc)
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Since we are interested in a simple stabilization test, we will consider the Lyapunov-
Krasovskii functional of Section 3.5.1 whose relaxation is provided in Section 3.5.2. After
substitution of the extended system in the LMI of Lemma 3.5.2 we get

Ξ =




−(X(ρ) +X(ρ)T ) Ξ2(ρ)T Ξ3(ρ)T Ξ5(ρ)T

Ξ2(ρ) Ξ4(ρ, ρ̇) Ξ6(ρ)T 0
Ξ3(ρ) Ξ6(ρ) Ξ8(ρ) 0
Ξ5(ρ) 0 0 Ξ10(ρ)




Ξ2(ρ) =



P (ρ) +

[
A(ρ)TXo(ρ)− Cy(ρ)TLo(ρ)T −K(ρ)TB(ρ)TXc(ρ)

0 A(ρ)TXc −K(ρ)TB(ρ)TXc(ρ)

]

[
0 0

Ah(ρ)TXo(ρ) Ah(ρ)TXc(ρ)

]




Ξ3(ρ) =




E(ρ)TXo(ρ)− Fy(ρ)TLo(ρ)T

E(ρ)TXc(ρ)
0
0




Ξ5(ρ) =
[

X
hmaxR

]

Ξ6(ρ) =




0 0 0 0
0 0 0 0
T 0 0 0

D(ρ)K(ρ) C(ρ)−D(ρ)K(ρ) 0 Ch(ρ)




Ξ8(ρ) =
[
−γ(ρ)Iw F (ρ)T

? −γ(ρ)Iz

]

Ξ10(ρ) =
[
−P (ρ) −hmaxR
? −R

]

Ξ4(ρ, ρ̇) =



∂P (ρ)
∂ρ

ρ̇− P (ρ) +Q−R R

? −(1− µ)Q−R




The main difficulty comes from the bilinear term Xc(ρ)TB(ρ)K(ρ). It is worth mentioning
that in this case it is not possible to find a linearizing congruence transformation. However,
it is possible to use the well-known on cross-terms heavily used in time-delay systems (see
Appendix F.2):

−2xT3 Xc(ρ)TB(ρ)K(ρ)x2 ≤ α1(ρ)xT3 Xc(ρ)TB(ρ)B(ρ)TXc(ρ)x3 + α1(ρ)−1xT2 K(ρ)TK(ρ)x2

−2xT4 Xc(ρ)TB(ρ)K(ρ)x2 ≤ α2(ρ)xT4 Xc(ρ)TB(ρ)B(ρ)TXc(ρ)x4 + α2(ρ)−1xT2 K(ρ)TK(ρ)x2

for any real valued vectors x2, x3, x4 of appropriate dimensions and real valued positive scalar
functions α1(·), α2(·). Using these inequalities it is possible to show that the following inequal-
ity implies Ξ < 0:
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Υ =




−(X +XT ) + Y1 Υ2(ρ)T Ξ3(ρ)T Ξ5(ρ)T

Υ2(ρ) Υ4(ρ, ρ̇) Ξ6(ρ)T 0
Ξ3(ρ) Ξ6(ρ) Ξ8(ρ) 0
Ξ5(ρ) 0 0 Ξ10(ρ)


 ≺ 0 (5.75)

with

Y1 =
[

0 0
0 (α2(ρ) + α1(ρ))[Xc(ρ)TB(ρ)B(ρ)TXc(ρ)]

]
(5.76)

Υ2(ρ) =



P (ρ) +

[
A(ρ)TXo(ρ)− Cy(ρ)TLo(ρ)T 0

0 A(ρ)TXc

]

[
0 0

Ah(ρ)TXo(ρ) Ah(ρ)TXc(ρ)

]


 (5.77)

Υ4(ρ, ρ̇) = Ξ4(ρ, ρ̇) + Y2

Y2 =
[
α1(ρ)−1K(ρ)TK(ρ) 0

0 α2(ρ)−1K(ρ)TK(ρ)

]

Finally since

Y1 =
[

0 0
α1(ρ)Xc(ρ)TB(ρ) α2(ρ)Xc(ρ)TB(ρ)

] [
α1(ρ)−1I 0

0 α2(ρ)−1I

]
(?)T

Y2 =
[
K(ρ)T 0

0 K(ρ)T

] [
α1(ρ)−1I 0

0 α2(ρ)−1I

]
(?)T

where (?)T stands for the symmetric part of the quadratic term, then Υ may be rewritten into
the form

Υ =




−(X +XT ) Υ2(ρ)T Ξ3(ρ)T Ξ5(ρ)T

Υ2(ρ) Ξ4(ρ, ρ̇) Ξ6(ρ)T 0
Ξ3(ρ) Ξ6(ρ) Ξ8(ρ) 0
Ξ5(ρ) 0 0 Ξ10(ρ)




+




0 0 0 0
α1(ρ)Xc(ρ)TB(ρ) α1(ρ)Xc(ρ)TB(ρ) 0 0

0 0 K(ρ)T 0
0 0 0 K(ρ)T

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




︸ ︷︷ ︸
Υc(ρ)

Υd(ρ)−1(?)T ≺ 0

with Υd(ρ)−1 =




α1(ρ)−1I 0 0 0
? α2(ρ)−1I 0 0
? ? α1(ρ)−1I 0
? ? ? α2(ρ)−1I


.
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And finally applying Schur complement we get




−(X +XT ) Υ2(ρ)T Ξ3(ρ)T Ξ5(ρ)T

Υ2(ρ) Ξ4(ρ, ρ̇) Ξ6(ρ)T 0 ΥT
c

Ξ3(ρ) Ξ6(ρ) Ξ8(ρ) 0
Ξ5(ρ) 0 0 Ξ10(ρ)

Υc Υd



< 0 (5.78)

which is linear in Xo, Xc, Lo,K, P,Q,R �

Remark 5.2.2 The procedure is similar when dealing with observer-based control law with
memory:

ξ̇(t) = A(ρ)ξ(t) +Ah(ρ)ξ(t− h(t)) +B(ρ)u(t)
s+ L(ρ)(y(t)− Cy(ρ)ξ(t)− Cyh(ρ)ξ(t− h(t)))

u(t) = −K(ρ)ξ(t)−Kh(ρ)ξ(t− h(t))
(5.79)

Indeed, in this case, the extended system would be
[
ė(t)
ẋ(t)

]
=

[
A(ρ)− L(ρ)Cy(ρ) 0

B(ρ)K(ρ) A(ρ)−B(ρ)K(ρ)

] [
e(t)
x(t)

]

+
[
Ah(ρ)− L(ρ)Cyh(ρ) 0

B(ρ)Kh(ρ) Ah(ρ)−B(ρ)Kh(ρ)

] [
e(t− h(t))
x(t− h(t))

]
+
[
E − LFy

E

]
w(t)

For such a system the same procedure applies and then is not detailed here.

5.2.2 Dynamic Output Feedback with memory design - exact delay case

This section is devoted to the design of a dynamic output feedback controller with memory.
The delay is assumed here to be exactly known. The advantage of such controllers resides
in the existence of congruence transformations and linearizing change of variables. However,
they are difficult to implement in practice due to the imprecision on the delay value knowledge.
Section 2.2.2 presents methods allowing to deal a posteriori on delay uncertainty that can be
used in order to give a bound on the maximal error on the delay value knowledge that can
be tolerated.

The class of systems under consideration is given by:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) +B(ρ)u(t) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) +D(ρ)u(t) + F (ρ)w(t)
y(t) = Cy(ρ)x(t) + Cyh(ρ)x(t− h(t)) + Fy(ρ)w(t)

(5.80)

for which the following stabilizing controllers have to be designed

ẋc(t) = Ac(ρ)xc(t) +Ahc(ρ)xc(t− h(t)) +Bc(ρ)y(t)
u(t) = Cc(ρ)xc(t) + Chc(ρ)xc(t− h(t)) +Dc(ρ)y(t)

(5.81)

where x ∈ Rn, xc ∈ Rn, u ∈ Rm, y ∈ Rp, w ∈ Rq and z ∈ Rr are respectively the system state,
the controller state, the control input, the measured output, the exogenous inputs and the
controlled outputs. The delay h(t) is assumed to belong to the set H ◦

1 and the parameters
ρ ∈ Uν with ρ̇ ∈ hull[Uν ].
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The closed-loop system is given by

˙̄x(t) =
[
A+BDcCy BCc

BcCy Ac

]

︸ ︷︷ ︸
Acl

x̄(t) +
[
Ah +BDcCyh BChc

BcCyh Ahc

]

︸ ︷︷ ︸
Ahcl

x̄(t− h(t))

+
[
E +BDcFy

BcFy

]

︸ ︷︷ ︸
Ecl

w(t)

z(t) =
[
C +DDcCy DCc

]
︸ ︷︷ ︸

Ccl

x̄(t) +
[
Ch +DDcCyh DChc

]
︸ ︷︷ ︸

Chcl

x̄(t− h(t))

+ (F +DDcFy)︸ ︷︷ ︸
Fcl

w(t)

(5.82)

with x̄(t) = col(x(t), xc(t)) and where the dependence on the parameters has been dropped
in order to improve the clarity.

The methodology to develop the main theorem is a bit different than for the other methods
and is inspired from [Scherer and Wieland, 2005]. The method is based on a LMI relaxation
of a Lyapunov-Krasovskii based approach. After substitution of the closed-loop system, a
congruence transformation and a linearization change of variable are performed.

Theorem 5.2.3 There exists a dynamic output feedback of the form (5.81) for system (5.80)
with h(t) ∈ H ◦

1 if there exist a continuously differentiable matrix function P̃ : Uρ → S2n
++,

constant matrices W1, X1 ∈ Sn++, Q̃, R̃ ∈ S2n
++, a scalar function α : Uρ → R++ and a scalar

γ > 0 such that the LMI




−2X̃ P (ρ) +A(ρ) Ah(ρ) E(ρ) 0 X̃ hmaxR̃

? U22(ρ, ν) R̃ 0 C(ρ)T 0 0
? ? U33 0 Ch(ρ)T 0 0
? ? ? −γI F(ρ)T 0 0
? ? ? ? −γI 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃




≺ 0 (5.83)
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holds for all (ρ, ν) ∈ Uρ × Uν where

X̃ =
[
W1 I
I X1

]

U22(ρ, ρ̇) = U22(ρ, ν)− P̃ (ρ) + Q̃− R̃+ ∂ρP̃ (ρ)ν
U33 = −(1− µ)Q̃− R̃

A(ρ) =
[
A(ρ)W1 +B(ρ)Cc(ρ) A(ρ) +B(ρ)Dc(ρ)Cy(ρ)

Ac(ρ) X1A(ρ) + Bc(ρ)Cy(ρ)

]

Ah(ρ) =
[
Ah(ρ)W1 +B(ρ)Cc(ρ) A(ρ) +B(ρ)Dc(ρ)Cyh(ρ)

Ahc(ρ) X1Ah(ρ) + Bc(ρ)Cyh(ρ)

]

E(ρ) =
[
E(ρ) +B(ρ)Dc(ρ)Fy(ρ)
X1E(ρ) + Bc(ρ)Fy(ρ)

]

C(ρ) =
[
Cy(ρ)W1 +D(ρ)Cc(ρ) Cy(ρ) +D(ρ)Dc(ρ)Cy(ρ)

]

Ch(ρ) =
[
Ch(ρ)W1 +D(ρ)Cyh(ρ) Ch(ρ) +D(ρ)Dc(ρ)Cyh(ρ)

]

F(ρ) =
[
F (ρ) +D(ρ)Dc(ρ)Fy(ρ)

]

In this case the corresponding controller is given by

[
Ac(ρ) Ahc(ρ) Bc(ρ)
Cc(ρ) Chc(ρ) Dc(ρ)

]
= M1(ρ)−1

([
Ac(ρ) Ahc(ρ) Bc(ρ)
Cc(ρ) Chc(ρ) Dc(ρ)

]
−M2(ρ)

)
M3(ρ)−1

M1(ρ) =
[
X2 X1B(ρ)
0 I

]

M2(ρ) =
[
X1A(ρ)W1 X1Ah(ρ)W1 0

0 0 0

]

M3(ρ) =




W T
2 0 0

0 W T
2 0

Cy(ρ)W1 Cyh(ρ)W1 I




X−1 =
[
X1 X2

? X3

]−1

=
[
W1 W2

? W3

]

and the closed-loop system satisfies ||z||L2 ≤ γ||w||L2.

Proof : First of all we rewrite the closed-loop system under the form

[
Acl Ahcl Ecl
Ccl Chcl Fcl

]
= Θ +




0 B
I 0
0 D


Ω




0 I 0 0 0
0 0 0 I 0
Cy 0 Cyh 0 Fy




Θ =



A 0 Ah 0 E
0 0 0 0 0
C 0 Ch 0 F




Ω =
[
Ac Ahc Bc
Cc Chc Dc

]
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For simplicity we restrict X to be a symmetric positive definite matrix such that

X =
[
X1 X2

XT
2 X3

]
W := X−1 =

[
W1 W2

W T
2 W3

]
(5.84)

By injecting the closed-loop system in LMI (3.109) of Theorem 3.5.5 we get




−2X P (ρ) +XTAcl(ρ) XTAhcl(ρ) XTEcl(ρ) 0 X hmaxR
? U22(ρ, ρ̇) R 0 Ccl(ρ)T 0 0
? ? U33 0 Chcl(ρ)T 0 0
? ? ? −γI Fcl(ρ)T 0 0
? ? ? ? −γI 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R




≺ 0

with

U22(ρ, ρ̇) = −P (ρ) +Q−R+ ∂ρP (ρ)ν
U33 = −(1− µ)Q−R

This inequality is obviously nonlinear and in order to linearize it we perform a congruence
transformation with respect to the matrix diag(ZT , ZT , ZT , I, I, ZT , ZT ) where

Z :=
[
W1 I
W T

2 0

]
(5.85)

Then we obtain



−2ZTXZ V12(ρ) V13(ρ) ZTXTEcl(ρ) 0 ZTXZ hmaxR̃

? V22(ρ, ν) R̃ 0 ZTCcl(ρ)T 0 0
? ? V33 0 ZTChcl(ρ)T 0 0
? ? ? −γI Fcl(ρ)T 0 0
? ? ? ? −γI 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃




≺ 0

with

V12(ρ) = P̃ (ρ) + ZTXTAcl(ρ)Z
V13(ρ) = V13(ρ)ZTXTAhcl(ρ)Z

V22(ρ, ν) = V22(ρ, ν)− P̃ (ρ) + Q̃− R̃+ ∂ρP̃ (ρ)ν)Z
V33 = −[(1− µ)Q̃+ R̃]

P̃ (ρ) = ZTP (ρ)Z
Q̃ = ZTQZ

R̃ = ZTRZ
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Note that

ZTX =
[

I 0
X1 X2

]

ZTXZ =
[
W1 I
I X1

]

and then defining

Z =
[
ZTXAclZ ZTXAhclZ ZTXEcl
CclZ ChclZ Fcl

]
(5.86)

we get

Z =




AW1 A AhW1 A E
0 X1A 0 X1Ah X1E

CyW1 Cy ChW1 Ch F


+ Θ1

[
Ac Ahc Bc
Cc Chc Dc

]

Θ1 =




0 B
I 0
0 D




Θ2 =



I 0 0 0 0
0 0 I 0 0
0 Cy 0 Cyh Fy




(5.87)

[
Ac Ahc Bc
Cc Chc Dc

]
=

[
X1AW1 X1AhW1 0

0 0 0

]
+ Ω1

[
Ac Ahc Bc
Cc Chc Dc

]

Ω1 =
[
X2 X1B
0 I

]

Ω2 =




W T
2 0 0

0 W T
2 0

CyW1 CyhW1 I




(5.88)

Finally we get

Z =




AW1 +BCc A+BDcCy AhW1 +BCc A+BDcCyh E +BDcFy
Ac X1A+ BcCy Ahc X1Ah + BcCyh X1E + BcFy

CyW1 +DCc Cy +DDcCy ChW1 +DCyh Ch +DDcCyh F +DDcFy




(5.89)
which shows that the equations are linearized with respect to the new variables (Ac, Ahc, Bc,
Cc, Cch, Dc). Finally replacing the linearized values into the inequality leads to the result. The
construction of the controller is performed by the inversion of the change of variable. �

Remark 5.2.4 The design of a memoryless controller of the form

xc(t) = Acxc(t) +Bcy(t)
u(t) = Ccxc(t) +Dcy(t)

(5.90)

is more involved since the matrix Z defined by

Z =



AW1 A AhW1 Ah E

0 X1A X1AhW1 X1Ah X1E

CW1 C ChW1 Ch F




+




0 B
I 0
0 D



[
Ac Bc
Cc Dc

] [
I 0 0 0 0
0 Cy 0 0 Dy

] (5.91)
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is nonlinear due to the term X1AhW1. The change of variable is given by
[
Ac Bc
Cc Dc

]
=
[
X1AW1 0

0 0

]
+
[
X2 X1B
0 I

] [
Ac Bc
Cc Dc

] [
W T

2 0
CyW1 I

]
(5.92)

Finally we would have

Z =




AW1 +BCc A+BDcCy AhW1 A E +BDcFy
Ac X1A+ BcCy X1AhW1 X1Ah X1E + BcFy

CyW1 +DCc Cy +DDcCy ChW1 Ch F +DDcFy


 (5.93)

and the problem would be nonconvex. However it can be relaxed using the same bounding
technique as for the observer based control law:

2xTX1AhW1y ≤ xTXXx+ yTW1A
T
hAhW1y (5.94)

5.3 Chapter Conclusion

We have developed in this chapter several control laws to stabilize LPV time-delay systems
in the L2 performances framework. Both state-feedback and dynamic output feedback con-
trol laws have been developed in both memoryless and with-memory structures. We have
emphasized the interest of the relaxations of LMI with multiple coupling in the synthesis
problem in terms of computational complexity and conservativeness. Although the bilinear
approach gives better results it is difficult to extend it to the case of discretized Lyapunov-
Krasovskii functional due to the high number of products between system data matrices and
decision variables: for a discretization of order N it would result in the introduction of N
’slack’ variables and hence 2N bilinearities which complexifies the initialization of the iter-
ative LMI algorithm. A new type of controllers has been introduced, the ’delay-scheduled’
state-feedback controllers whose gain is smoothly scheduled by the delay value, in a similar
way as for gain-scheduling strategies used in the LPV control framework.

Several dynamic output feedback controllers have been synthesized and their efficiency
demonstrated through an example. It is worth mentioning that dynamic output feedback
control laws are still open problems in time-delay systems framework.



Conclusion and Future Works

Summary and Main Contributions

This thesis has considered the control and observation of LPV time-delay systems using a
part of the arsenal of modern control tools. Even if the problem remain open for several
complex cases, the results presented in this thesis has improved many of the current results.
The work has been presented in five chapters.

• In the first chapter, a state of the art on LPV systems is presented in which different
types of representation coupled with their specific stability tests have been introduced.

• The second chapter, a (non-exhaustive) state of the art of time-delay systems is ad-
dressed with a particular focusing on time-domain methods, especially Lyapunov-Krasovskii
functionals, small-gain, well-posedness and IQC based methods.

• The third chapter gathers parts of the theoretical contributions of this work. Two meth-
ods of relaxations for parameter dependent matrix inequalities and for matrix inequal-
ities with particular concave nonlinearities have been developed. Known Lyapunov-
Krasovskii functionals are generalized to the LPV case and relaxed using a specific
approach in order to get ’easy-to-use’ condition in the synthesis framework. Finally, a
new Lyapunov-Krasovskii functional has been expressed in order to consider the spe-
cial case of systems with two delays, in which the delays satisfy an equality, arising in
the problem of stabilization of a time-delay system with a controller implementing a
different delay.

• The fourth chapter used results of chapter three in order to construct observers and
filters which have been shown to lead with interesting results.

• The fifth and last chapter used results of chapter 3 in order to derive different control
laws: memoryless /with memory state-feedback/dynamic output feedback controllers.
Moreover, a new design technique based on a LPV representation of time-delay systems
has been applied to construct a new type of controller called ’delay-scheduled’ controller
where the controller gain depend on the delay. Using this technique, the robustness
analysis with respect to delay knowledge uncertainty can be performed easily since the
delay is not viewed anymore as an operator but as a scheduling parameter.

Future Works

As a perspective of the results developed in this thesis we can mention:

243
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• The provided results only considers systems with are stable/stabilizable/detectable for
zero delay (i.e. A+Ah Hurwitz) and hence they may be conservative while considering
systems which are not stable/stabilizable/detectable for zero delay but only from hmin 6=
0. Hence, it seems interesting and important to consider delay-range stability [He
et al., 2007, Jiang and Han, 2005, Knospe and Roozbehani, 2006, 2003, Roozbehani
and Knospe, 2005]. Note also that only few results exists on discretized Lyapunov-
Krasovskii functionals for such systems.

• Two types of controllers have been developed in this thesis: state-feedback and dynamic
output feedback control laws. It seems important to extend these results to the static-
output feedback case [Li et al., 1998, Michiels et al., 2004, Peaucelle and Arzelier, 2005,
Sename and Lafay, 1993, Seuret et al., 2008, Syrmos et al., 1995]. It is worth mentioning
that despite of its simplicity, the static output feedback case is difficult to develop to
the NP-hardness of its necessary and sufficient existence condition [Fu, 2004]. The
method proposed in [Prempain and Postlethwaite, 2005] deserves attention and shall be
generalized to time-delay systems and LPV systems. Moreover, delayed static-output
feedback control is able to stabilize systems which are not stabilizable by instantaneous
static-output feedback as noticed in [Niculescu and Abdallah, 2000]. In such a control
law, the delay is an extra degree of freedom.

• Since many control systems have bounded inputs, it may be interesting to develop
control laws in presence of saturations on the inputs [da Silva and Tarbouriech, 2005,
Ferreres and Biannic, 2007, Henrion and Tarbouriech, 1999, Henrion et al., 2005, Wu
and Lu, 2004, Wu and Soto, 2004].

• The generalization of such approach to :

– input/output delayed systems, distributed and neutral delay systems

– systems with delayed parameters

– systems with parameter dependent delays

• The extension of the current work to more complex parameter-dependent Lyapunov-
Krasovskii functional, e.g.

V (xt, ẋt) = V1(x, ρ) + V2(xt, ρt)
V1(x, ρ) = x(t)TP (ρ)x(t)
V2(xt, ρt) =

∫ t
t−h(t) x(θ)TQ(ρ(θ)x(θ)dθ

in order to reduce the conservatism of the approach.

• The application of such control strategies on physical systems, currently, the stabiliza-
tion of unstable modes in fusion plasmas (see Appendix L or [Olofsson et al., 2008]).



Chapter 6

Appendix

A Technical Results in Linear Algebra

This appendix is devoted to the introduction of some fundamentals on matrix algebra. It is
supposed that matrix multiplication and inversion is known. Determinants of block matrices,
notion of eigenvalues and eigenvectors, inverse of block matrices, notion of order in the set
of symmetric matrices, singular value decomposition, Moore-Penrose pseudo-inverse and the
resolution of specific matrix equality and inequality will be considered.

A.1 Determinant Formulae

We give here several important relations concerning the determinant. For a square matrix
A ∈ Cn×n, its determinant is denoted det(A). If A and B are both square matrices of same
dimensions, then it can be shown that

det(AB) = det(A) det(B) = det(BA)

Another well-known fact is

det
([

A B
0 D

])
= det(A) det(D) (A.1)

when A and D are both square. If A is square and nonsingular, then we can use the latter
relations and the fact that

det
([

A B
C D

])
=
[

I 0
CA−1 I

] [
A B
0 D − CA−1B

]

to get

det
([

A B
C D

])
= det(A) det(D − CA−1B)

which is known as the Schur (determinant) complement. Similarly, if D is nonsingular, we
can show

det
([

A B
C D

])
= det(D) det(A−BD−1C)

If A = I and D = I and BC is a square matrix, we arrive at the following very useful identity

det(I −BC) = det(I − CB)
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A.2 Eigenvalues of Matrices

Definition A.1 For a square matrix M ∈ Rn×n, the spectrum of M (the set of eigenvalues of
M) is denoted λ(A) = coli(λi) each one of these zeroes the characteristic polynomial defined
as

χM (λ) = det(λI −M) (A.2)

where det(M) is the determinant of M .

We have the following relations:
∑n

i=1 λi = trace(A)∏n
i=1 λi = det(A)

For the special cases n = 1, 2 and 3 the characteristic polynomial is given by the expressions

n = 1: χM (λ) = λ−M

n = 2: χM (λ) = λ2 − trace(M)λ+ det(M)

n = 3: χM (λ) = λ3 − trace(M)λ2 + trace[Adj(M)]λ+ det(M)

where trace(M) and Adj(M) are respectively the trace and the adjugate matrix of M .

Let us consider now symmetric matrices, i.e. matrices such that M = M∗ (or M = MT

if M is a real matrix). It can be shown that in this case all the eigenvalues of M are real
[Bhatia, 1997]. Moreover, we have the following definition:

Definition A.2 The eigenvectors of a symmetric square matrix M are defined to be the
nonzero full column rank matrices vi such that

(A− λi)vi = 0 (A.3)

In this case, the matrix M ′ = PMP−1 exhibits all the eigenvalues of M on the diagonal:

M ′ = diag(λiImi)

where the eigenvalues are repeated as many times as their order of multiplicity mi. The matrix
P is defined as P =

[
v1 . . . vn

]
. This decomposition is called spectral decomposition.

Remark A.3 This suggests that for a symmetric matrix M with eigenvalues λj with order
of multplicity mj, there exists mj eigenvectors u such that (A− λj)v = 0. It is important to
emphasize that it is not the always the case for general matrices. In such a case, the matrix
may be non-diagonalizable but can be reduced to a Jordan matrix. Any algebra book or course
shall detail this correctly.

The fact that every symmetric matrix can be diagonalized in an orthonormal basis is an
interesting fact and makes symmetric matrices an useful tools in many fields. The interest
of symmetric matrices is the ability to generalize the notion of positive and negative number
to the matrix case. Indeed, since the eigenvalues of symmetric matrices are all real then it
is possible to define positive and negative matrices, hence a relation of order in the set of
symmetric matrices.
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Definition A.4 A symmetric matrix M is said to be positive (semi)definite if all its eigen-
values are positive (nonnegative). This is denoted by M � 0(� 0).

Definition A.5 A symmetric matrix M is said to be negative (semi)definite if all its eigen-
values are negative (nonpositive). This is denoted by M ≺ 0(� 0).

The notion of positivity and negativity of a symmetric matrix M is related to its associated
quadratic form xTMx where x is a real vector.

Proposition A.6 A n× n symmetric matrix M is positive (semi)definite if and only if the
quadratic form xTMx > 0(≥ 0 for all x ∈ Rn.

Proof : Sufficiency:
Suppose all the eigenvalues of M are nonnegative. Define now the quadratic form Q(x) =

xTMx and since M is nonnegative, then in virtue of the Cholesky decomposition of symmetric
nonnegative matrices we have Q(x) = xTLTLx which is equal to ||Lx||2 and is obviously
nonnegative.

Necessity:
Suppose now that Q(x) = xTMx ≥ 0 for all x ∈ Rn. A well-known result says that if

a quadratic form is positive semidefinite then it is sum-of-squares (see Section 1.3.3.3) and
writes as Q(x) =

∑
i qi(x)2. Now introduce line vectors Li such that qi(x) = Lix and therefore

we have qi(x)2 = xTLTi Lix. Finally denoting

L :=



L1
...
Ln




then we have Q(x) = xTLTLx where LTL � 0. This concludes the proof. �

Proposition A.7 A n× n symmetric matrix M is negative (semi)definite if and only if the
quadratic form xTMx < 0(≤ 0 for all x ∈ Rn.

A.3 Exponential of Matrices

Definition A.8 The exponential of a square matrix A is given by the expression

eM = exp(M) :=
+∞∑

i=1

M i

i!
(A.4)

Theorem A.9 (Cayley-Hamilton Theorem) Any square matrix M ∈ Rn×n satisfies the
equality

χM (M) = 0 (A.5)

where χM (λ) is the characteristic polynomial of M .

This theorem shows that for a matrix M of dimension n, Mn can be computed as a linear
combination of all other lower powers Mk, 0 ≤ k < n. For instance for n = 2 we have

M2 = trace(M)M − det(M) (A.6)
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It allows to compute any powers of M using a linear combination of all powers of M from 0
to n− 1. For instance,

M3 = trace(M)M2 − det(M)M
= trace(M)(trace(M)M − det(M))− det(M)M
= [trace(M)2 − det(M)]M − det(M)

(A.7)

One of the most important applications of this theorem is the rank condition for controllability
and observability of linear systems; this will be detailed in Appendix B.6. As any power of
M can be expressed in through a linear combination of powers from 0 to n− 1 therefore any
sum of power of matrices can be written is such a manner, even if the sum infinite is (but
countable).

Proposition A.10 The exponential of a matrix M , by virtue of the Cayley-Hamilton theo-
rem, can be expressed as

exp(M) =
n−1∑

i=0

αiM
i (A.8)

where the αi satisfies the linear system

n−1∑

i=0

αiλ
i
j = eλj for all j = 1, . . . , n (A.9)

The infinite sum has been amazingly converted into a finite sum where the coefficients are
determined by solving a system of linear equations.

A.4 Generalities on Block-Matrices

Let us consider the matrix

M =
[
A B
C D

]

Assuming that M is square and invertible then the inverse is given by

M−1 =
[
A−1 +A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

]

=
[

(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

] (A.10)

The first formula is well-defined if A is invertible while the second when D is invertible. By
identification of the blocks we get the well-known matrix inversion lemma:

Lemma A.11 (Matrix Inversion Lemma)

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1 (A.11)

or also
(A−BDC)−1 = A−1 +A−1B(D−1 − CA−1B)−1CA−1 (A.12)

We also have the identity:

A−1B(D − CA−1B)−1 = (A−BD−1C)−1BD−1 (A.13)
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A.5 Kronecker operators and Matrix Tensor Sum and Product

This sections aims at providing some elementary definitions about Kronecker product and
sum.

The Kronecker product is defined by

A⊗B =



a11B . . . a1nB

...
. . .

...
ap1B . . . apnB


 (A.14)

We have the following relations where α is a scalar:

1⊗A = A⊗ 1 = A
A⊗ (B + αC) = A⊗B + αA⊗ C
A⊗ (B ⊗ C) = (A⊗B)⊗ C
(A⊗B)(C ⊗ C) = (AC)⊗ (BD)
(A⊗B)−1 = A−1 ⊗B−1

(A⊗B)T = AT ⊗BT

λ(A⊗B) = {νiµj ∀(i, j)} where λ(A) = ν, λ(B) = µ
trace(A⊗B) = trace(A) trace(B)
det(A⊗B) = det(A)n det(B)n, n = dim(A)
rank(A⊗B) = rank(A) rank(B)

The Kronecker sum of two matrices A ∈ Rn×n and B ∈ Rm×m is defined by

A⊕B = A⊗ Im + In ⊗B (A.15)

Moreover we have the following properties

eA⊕B = eA ⊗ eB
λ(A⊕B) = λ(A) ∪ λ(B)

It is convenient to introduce the tensor product and sum φ⊗, φ⊕ : Cm×m × Cm×m → Cp×p.
Let us consider P,Q ∈ Cm×m with m ≥ 2 and

p = m2 :
{
φ⊗(P,Q) = P ⊗Q
φ⊕(P,Q) = P ⊕Q

p =
m(m− 1)

2
:
{
φ⊗(P,Q) = P ⊗̃Q
φ⊕(P,Q) = P ⊕̃Q

where⊕ and⊗ are Kronecker sum and product define above. On the other hand, the operators
⊕̃ and ⊗̃ are defined as follows [Qiu and Davidson, 1991]:

P ⊗̃Q == [ci,j ] ∈ Cp×p

where ci,j = (pi1,j1qi2,j2 + pi2,j2qi1,j1 − pi2,j1qi1,j2 − pi1,j2qi2,j1 where (i1, i2) is the ith pair
of sequence (1, 2), (1, 3), . . . , (1,m), (2, 3), . . . , (2,m), . . . , (m,m) and (j1, j2) is generated by
duality. For P ⊕̃Q the classical definition is extended in

P ⊕̃Q = P ⊕̃Im + Im⊕̃Q

Algebraic properties of these tensor product and sum can be found in [Marcus, 1973, Qiu and
Davidson, 1991].
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A.6 Singular-Values Decomposition

The eigenvalue decomposition of a square matrix is the problem in finding a basis in which the
matrix has an expression where the eigenvalues are all placed on the diagonal. This is called
a spectral decomposition. We provide here a kind of generalization of such a procedure when
the matrix M is not necessarily square: this is called the singular-value decomposition. A
unitary matrix U is defined as U∗U = I = UU∗ where the superscript ∗ denotes the complex
conjugate transpose.

Theorem A.12 Let M ∈ Ck×n be a matrix of rank r. Then there exist unitary matrices U
and V such that

M = UΣV ∗ (A.16)

where U and V satisfy

MM∗U = UΣΣ∗ M∗MV = V Σ∗Σ (A.17)

and Σ has the canonical structure

Σ =
[

Σ0 0
0 0

]
, Σ0 = diag(σ1, . . . , σr) ≺ 0 (A.18)

The numbers σi > 0, i = 1, . . . , r are called the nonzero singular values of M .

Proof : The proof is given in Skelton et al. [1997] and for more on singular value decom-
position see Horn and Johnson [1990] or many other books on linear algebra. �

A.7 Moore-Penrose Pseudoinverse

Let M ∈ Rn×n be a nonsingular matrix (i.e. det(M) 6= 0), then there exists a matrix inverse
denoted M−1 such that MM−1 = M−1M = I. We provide here the generalization of this
procedure to rectangular matrices. It has been shown that any n × m matrix M can be
expressed as a singular value decomposition M = UΣV ∗.

Theorem A.13 For every matrix M ∈ Rn×m, there exist a unique matrix M+ ∈ Rm×n, the
Moore-Penrose pseudoinverse of M , which satisfies the relation below:

MM+M = M M+MM+ = M+

(MM+)∗ = MM+ (M+M)∗ = M+M
(A.19)

Moreover, M+ is given by

M+ := V

[
Σ−1

0 0
0 0

]
U∗ (A.20)

Moreover consider the matrix M ∈ Rn×m then

• if M has full row rank n then M+ = M∗(MM∗)−1

• if M has full column rank m then M+ = (M∗M)−1M∗
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A.8 Solving AX = B

The solution X of equation AX = B is trivial when A is a nonsingular matrix. We aim
here at showing that there exists an explicit expression to X when A is a rectangular matrix
sharing specific assumptions with B.

Theorem A.14 Let A ∈ Rn1×n2 , X ∈ Rn2×n3 and B ∈ Rn1×n3. Then the following state-
ments are equivalent:

1. The equation AX = B has a solution X.

2. A,X and B satisfy AA+B = B.

3. A,X and B satisfy (I −AA+)B = 0.

In this case all solutions are
X = A+B + (I −A+A)Z (A.21)

where Z ∈ Rn1×n3 is arbitrary and A+ is the Moore-Penrose pseudoinverse of A.

A.9 Solving BXC + (BXC)∗ + Q ≺ 0

Such equation arises in control synthesis for linear finite dimensional systems and this moti-
vates why it is presented here.

Theorem A.15 Let matrices B ∈ Cn×m, C ∈ Ck×n and Q = Q∗ ∈ Hn be given. Then the
following statements are equivalent:

1. There exists a X satisfying

BXC + (BXC)∗ +Q < 0 (A.22)

2. The following two conditions hold

B⊥QB∗⊥ ≺ 0 or BB∗ � 0
C∗⊥QC⊥ ≺ 0 or C∗C � 0

(A.23)

Suppose the above statements hold. Let rb and rc be the ranks of B and C, respectively,
and (B`, Br) and (C`, Cr) be any full rank factors of B and C (i.e. B = B`Br and
C = C`Cr). Then all matrices X in statement 1. are given by

X = B+
r KC

+
` Z −B+

r BrZC`C
+
` (A.24)

where Z is an arbitrary matrix and

K := −R−1B∗`ΦC∗r (CrΦC∗r )−1 + S1/2L(CrΦC∗r )−1/2

S := R−1 −R−1B∗` −R−1B∗` [Φ− ΦC∗r (CΦ
r C
∗
r )−1CrΦ]B`R−1 (A.25)

where L is an arbitrary matrix such that ||L|| < 1 (i.e. σ̄(L) < 1) and R is an arbitrary
positive definite matrix such that

Φ := (B`R−1B∗` −Q)−1 � 0 (A.26)
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The solution X is quite complicated and can be approximated by a more simple expres-
sion. If one of statements above holds, then more simple solutions are given by each of the
expressions (see Iwasaki and Skelton [1995]):

XB := −τBB∗ΨBC
T (CΨBC

∗)−1

XC := −τC(B∗ΨCB)−1B∗ΨCC
∗ (A.27)

where τB, τC > 0 are sufficiently large scalars such that

ΨB := (τBBB∗ −Q)−1 � 0
ΨC := (τCC∗C −Q)−1 � 0

(A.28)

B Technical results on Dynamical Systems

This appendix is devoted to give an overview of dynamical systems. The definition of dynam-
ical systems will be given. The notion of equilibrium points and solutions will be introduced
with the concept of stability. Then we will focus on linear dynamical systems which en-
joys nice and common properties. Finally, concepts that are closer to control problems, the
notions of controllability and observability will be enunciated with associated structures for
controllers and observers.

B.1 Finite dimensional Dynamical Systems

This section provides definitions on dynamical systems and several associated notions such
as equilibrium points.

Definition B.1 A finite dimensional dynamical system is a set of coupled ordinary differen-
tial equations (ODE):

ẋ1(t) = f1(t, x(t), w(t))
. . .
ẋn(t) = fn(t, x(t), w(t))
x(0) = x0

(B.29)

with x(t) = col(x1(t), . . . , xn(t)).

The vector x ∈ Rn is called the state of the system and characterizes completely the
system at each time t. The vector w ∈ Rm contains functions (inhomogeneity) affecting the
evolution of the state at each time t. The term finite dimensional comes from the fact the
state x belongs to a finite dimensional space; generally speaking an Euclidian space, here of
dimension n (for instance Rn).

The evolution of the state of a dynamical system at time t depends on the current state
x(t), the time t and exogenous terms w(t). When the fi’s do not depend explicitly on time t
the system is called time-invariant and if there is no w(t) the system is said to be autonomous
(the future evolution depends only on the current state). In the following, we will focus on
time-invariant autonomous dynamical system.

Definition B.2 The set of equilibrium points of system (B.29) is defined by

E := {x ∈ Rn : fi(x) = 0, i = 1, . . . , n} (B.30)
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Roughly speaking, once the state of the system has reached one of these equilibrium points,
the state will permanently remains on until it is forced to move (for instance by action of
external signals).

The solution of such a dynamical system is given by the function φ(t, x0). This function
φ : R×Rn → Rn is called the flow associated to the differential equation. If x0 is kept fixed,
then the function

t→ φ(t, x0) (B.31)

is just an alternative expression for the solution of the differential equation satisfying the
initial condition x0.

Definition B.3 A smooth dynamical system of Rn is a continuously differentiable function
φ : R× Rn → Rn where φ(t, x) = φt(x) satisfies

1. φ0 : Rn → Rn is the identity function: φ0(x0) = x0

2. The composition φt ◦ φs = φt+s for each t, x ∈ R (Semi-group property)

Recall that a function which is continuously differentiable means that all its partial deriva-
tives exist and are continuous throughout its domain (here R×Rn). The fact that the function
φ is smooth implies that the trajectory of the state will be smooth too (and then continuously
differentiable).

For a given φt, let

f(x) =
d

dt

∣∣∣∣
t=0

φt(x) (B.32)

Then φt is just the time t map associated to the flow ẋ = f(x).

B.2 Existence and uniqueness of solutions

It is important to characterize the solutions of a dynamical system. When such a solution
exists ? How many of solutions exist ? For instance, if a system is modeled through a
dynamical system, it seems important to have solutions to this model.

For simplicity, we consider in the following

ẋ(t) = f(x(t))
x(0) = x0

(B.33)

where x0 ∈ Rn. We provide here a local result on existence and uniqueness of solutions:

Theorem B.4 Consider the initial value problem (B.33) with given x0 ∈ Rn and suppose
that f : Rn → Rn is C1. Then, first of all, there exists a solution of this initial value problem
and secondly this is the only such solution.

A global characterization of the existence and uniqueness of solution to the initial value
problem (B.33) is given below

Theorem B.5 For all x0 ∈ Rn there exists an unique solution if and only if the function f
is Lipschitz, i.e.

There exists k > 0 for all x, y ∈ Rn such that ||f(y)− f(x)|| ≤ k||y − x|| (B.34)
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B.3 Continuous Dependence of Solutions

The existence and uniqueness of solutions to the initial value problem (B.33) is interesting in
both the mathematical and physical senses. This result needs to be complemented with the
property that the solution x(t) depends continuously on the initial condition x0. The next
theorem gives a precise statement of this property:

Theorem B.6 Consider the differential equation ẋ = f(x) where f : Rn → Rn is C1. Suppose
that x(t) is a solution of this equation which is defined on the closed interval [t0, t1] with
x(t0) = x(0). Then there is a neighborhood U ⊂ Rn of x0 and a constant k such that if
y0 ∈ U , then there is a unique solution y(t) also defined on [t0, t1] with y(t0) = y0. Moreover
y(t) satisfies

||y(t)− x(t)|| ≤ k||y0 − x0||ek(t−t0) (B.35)

for all t ∈ [t0, t1].

This result says that, if the solutions x(t) and y(t) start out close together, then they
remain close together for t close to t0. While these solutions may separate from each other,
they do so no faster than exponentially. In particular, since the right-hand side of (B.35)
depends on ||y0 − x0||, which we may assume is small, we have:

Corollary B.7 Let φ(t, x) be the flow of the system ẋ = f(x) where f is C1. Then φ is a
continuous function of x.

B.4 Stability of Equilibria of Dynamical Systems

The set E defined in (B.30) is the set of equilibrium points of the dynamical system ẋ = f(x)).
To understand the behavior of the dynamical system, it is necessary to determine how the
system behaves in a neighborhood of these equilibria. This leads to the theory of stability,
and more precisely to the notion of the Lyapunov stability:

Definition B.8 Let φ : T× T× Rn → X be the flow of the system ẋ = f(x), x(0) = x0 and
suppose that T = R and X is a normed vector space. The equilibrium point x∗ is said to be

1. Stable (in the sense of Lyapunov) if given any ε > 0 and t0 ∈ T, there exists δ =
δ(ε, t0) > 0 (not depending on t) such that

||x0 − x∗|| ≤ δ ⇒ ||φ(t, x0)− x∗|| ≤ ε for all t ≥ t0 (B.36)

2. Attractive if for all t0 ∈ T there exists δ = δ(t0) > 0 with the property that

||x0 − x∗|| ≤ δ ⇒ lim
t→+∞

||φ(t, t0, x0)− x∗|| = 0 (B.37)

3. Exponentially Stable if for all t0 ∈ T there exists δ = δ(t0), α = α(t0) > 0 and
β = β(t0) > 0 such that

||x0 − x∗|| ≤ δ ⇒ ||φ(t, t0, x0)− x∗|| ≤ β||x0 − x∗||e−α(t−t0) for all t ≥ t0 (B.38)

4. Asymptotically Stable (in the sense of Lyapunov) if it is both stable (in the sense of
Lyapunov) and attractive.
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5. Unstable is it is not stable (in the sense of Lyapunov)

6. Uniformly Stable (in the sense of Lyapunov) if given ε > 0 there exists δ = δ(ε) > 0
(not depending on t0 such that (B.36) holds for all t0 ∈ T.

7. Uniformly Attractive if there exists δ > 0 (not depending on t0) such that (B.37)
holds for all t0T.

8. Uniformly Exponentially Stable if there exists δ > 0 (not depending on t0) such
that (B.38) holds for all t0 ∈ T.

9. Uniformly Asymptotically Stable (in the sense of Lyapunov) if it is both uniformly
stable (in the sense of Lyapunov) and uniformly attractive.

Note that the notion of exponential stability is the strongest one since an exponentially
stable equilibrium point is also an asymptotically stable fixed point.

Definition B.9 The region of attraction associated with a fixed point x∗ is defined to be the
set

A(x∗) :=
{
x0 ∈ X : φ(t, t0, x0) −→

t→+∞
x∗
}

(B.39)

If this region does not depend on t0, it is said to be uniform, if it coincides with with
X then x∗ is globally attractive. In the same fashion, it is possible to define the region
of stability, asymptotic stability and exponential stability associated with x∗. Again, these
regions are said to be uniform if they do not depend on t0. If these regions covers the whole
state-space X , then the fixed point is called globally stable, globally asymptotically stable
and globally exponentially stable respectively.

Definition B.10 We define here the notion of positive and negative invariant sets. A positive
(resp. negative) invariant set X+

i (resp. X−i ) is defined to be

X+
i := {x0 ∈ V ⊂ X : ∃t0 ∈ T, φ(t, t0, x0) ∈ V for all t ≥ t0} (B.40)

X−i := {x0 ∈ V ⊂ X : ∃t0 ∈ T, φ(t, t0, x0) ∈ V for all t ≤ t0} (B.41)

A set which is both a negative and positive invariant set is called an invariant set.

These previous definitions give an idea how a dynamical system may behave around an
equilibrium point. But the question is ’how can we determine which behavior the system
has around a certain fixed point ?’. The following result provides a general answer to this
question:

Theorem B.11 (Lyapunov Stability Theorem:) Let x∗ ∈ E be an equilibrium point for
ẋ = f(x). Let V : O → R be a differentiable function defined on an open set O containing
x∗. Suppose further that

1. V (x∗) = 0 and V (x) > 0 if x 6= x∗

2. V̇ ≤ 0 in O − {x∗}

Then x∗ is stable. Furthermore, if V also satisfies
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3. V̇ < 0 in O − {x∗},

then x∗ is asymptotically stable.

A function V satisfying 1. and 2. is called a Lyapunov function for x∗. If 3. also holds, we
call V a strict Lyapunov function. This theorem says that if we consider an initial condition
near the equilibrium point (in O) such that at least 1. and 2. are satisfied, then the solution
stays in a neighborhood of x∗ (which may be different from O). Moreover, if 3. holds, then
the solution converges to x∗.

The great advantage of such a method comes from the fact that it can be applied without
solving the differential equations. It is possible, with this method, to determine both the
behavior of the system in a neighborhood of an equilibrium point x∗ but also find a region of
attraction A(x∗) if the the fixed point x∗ is, at least, attractive. Nevertheless, there does not
exist any systematic approach to build such functions. Sometimes it is easy to find functions
representing the energy of the system but in many cases they are not trivial functions.

B.5 Linear Dynamical Systems

We detail here the very special case of linear dynamical systems which can be easily repre-
sented over t ≥ t0 as

ẋ(t) = Ax(t)
x(t0) = x0

(B.42)

where A ∈ Rn×n. A linear dynamical system can be linear due to the framework used to
model system such as first order approximation of heat transfer, or low frequency electronic
filter or also simple mechanical systems (mass and spring). They can also be obtained from
nonlinear systems (models) using a linearization procedure explained hereafter.

Let us consider the nonlinear dynamical system described by ẋ = f(x) and let x∗ ∈ X be
one of its equilibrium points. Then we have

f(x) = f(x∗) +
n∑

j=1

∂f

∂xj
(x∗)[x− x∗] + . . . (B.43)

Then a first order approximation of f(x) leads to a linear dynamical system of the form
(B.42) where

A :=
∂f

∂x

∣∣∣∣
x=x∗

=




∂f1

∂x1
(x∗) . . .

∂f1

∂xn
(x∗)

...
...

∂fn
∂x1

v . . .
∂fn
∂xn

(x∗)




(B.44)

Proposition B.12 Let φ(t, t0, x0) be the flow of a linear dynamical system, then the flow is
linear in X 0.

Proposition B.13 Let φ : T×T×X be a flow of a linear dynamical system with T = R and
suppose that x∗ is a fixed point then

1. x∗ is attractive if and only if x∗ is globally attractive.
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2. x∗ is asymptotically stable if and only if x∗ is globally asymptotically stable.

3. x∗ is exponentially stable if and only if x∗ is globally exponentially stable.

If φ is time-invariant then

1. x∗ is stable if and only if x∗ uniformly stable.

2. x∗ is asymptotically stable if and only if x∗ uniformly asymptotically stable.

3. x∗ is exponentially stable if and only if x∗ uniformly exponentially stable.

Proof : The proof can be found in Scherer and Wieland [2005]. �
This result is very interesting in the sense that every property for a fixed point is global for

linear dynamical systems. This justifies the fact that a linear system with a stable equilibrium
point is called a stable system.

It is possible to define a Lyapunov function for such systems, this is provided in the
following proposition:

Proposition B.14 Consider system (B.42). The following statements are equivalent:

1. The origin is an asymptotically stable equilibrium.

2. The origin is a globally asymptotically stable equilibrium.

3. All eigenvalues λ(A) lie in the complex open left-half plane (i.e. have strictly negative
real part).

4. The quadratic function V (x) = xTPx with P = P T > 0 is a Lyapunov function for
(B.42).

5. The following Linear Matrix Inequalities are satisfied

ATP + PA ≺ 0 P = P T � 0 (B.45)

The last statement involves two Linear Matrix Inequalities and at first sight, it may
seem difficult to deal with such a condition. Actually, it is more simple to consider LMIs
than a direct computation of the eigenvalues since first of all when considering time-varying
systems the set of eigenvalues is infinite and hence hard to compute. Moreover, LMIs are
convex problems and hence can be efficiently solved using convex optimization programs
(See Appendix D). Finally, it is possible to construct more complex LMIs capturing more
information on the linear dynamical system (e.g. the rate of convergence which are also
called Lyapunov Exponents). More information about this in Appendix E.

B.6 Controllability and Observability of Dynamical Systems

In this section we will consider dynamical systems of the form

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))
x(t0) = x0

(B.46)

where x ∈ X ⊂ Rn, u ∈ U ⊂ Rm and y ∈ Y ⊂ Rp are respectively the state, the control input
and the controlled output.
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Definition B.15 System (B.46) is said to be controllable from time s if there exists t > s
such that any state x(s) can be transferred to any state x(t) through an appropriate choice of
the input u(·) over [s, t].

Definition B.16 System (B.46) is said to be reachable at time t if there exists t > s such
that any state x(s) can be transferred to any state x(t) through an appropriate choice of the
input u(·) over [s, t].

Definition B.17 System (B.46) is said to be observable at time s if there exists t > s such
that the state x(s) can be determined from the output y(·) over [s, t].

Definition B.18 System (B.47) is said to be reconstructable from time t if there exists t > s
such that the state x(s) can be determined from the output y(·) over [s, t].

Proposition B.19 In the special linear case, the reachability and controllability imply each
others, are global (for all x ∈ X ) and uniform (for all t, s ∈ T) properties. This motivates
the denomination of completely controllable systems. The observability and reconstructability
satisfy the same properties.

In other words, for linear systems, controllability means the existence of a control input
u which transfers any state value to any arbitrary state value. Observability means that for
any trajectory of the output y, it is possible to reconstruct the state value over the trajectory.

Let us consider system
ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t))
x(t0) = x0

(B.47)

Definition B.20 System (B.47) is completely controllable if one of the following equivalent
statements holds:

1. For all t0, t1 ∈ T, x0, x1 ∈ X there exist a control law u over [t0, t1] transferring x(t0) =
x0 to x(t1) = x1.

2. rank
[
B AB A2B . . . An−1B

]
= n

3. For all α > 0, there exists P = P T � 0 and Y such that the LMIs hold

AP + PAT +BY + Y TBT ≺ −2αP P = P T � 0 (B.48)

Statement 2. is very interesting because, it translate an a priori infinite dimensional
problem (we are looking for the existence of a function u) into a finite dimensional problem
which can be verified easily. If a system is completely controllable then each one of its states
can be placed where sought and independently from each others. This means that if the
system is unstable then, by a suitable choice of the control input u, the unstable states can
be placed where desired.

Statement 3. is a LMI condition to the fact that the control law u(t) = Kx(t) allows to
place all the eigenvalues of the matrix A+BK below than −α for all α > 0.

In some cases, some of the states cannot be set anywhere. In this case, all we can do is
expecting that these states do not depend on unstable modes (their dynamical behavior is
stable), this brings to the notion of stabilizability:
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Definition B.21 System (B.47) is stabilizable if one of the following equivalent statements
holds:

1. rank
[
sI −A B

]
= n for all s ∈ C+

2. There is no loss of rank when evaluating the rank condition

rank
[
sI −A B

]

at each nonnegative eigenvalue of A.

3. There exists P = P T � 0 such that the LMIs hold

N T
UT (AP + PAT )NUT ≺ 0 P = P T � 0 (B.49)

4. There exists P = P T � 0 and Y such that the LMIs hold

AP + PAT +BY + Y TBT ≺ 0 P = P T � 0 (B.50)

Statement 1 is difficult to verify in all the case since it is a semi-infinite rank constraint.
Statement 2, says that it suffices to verify a rank property only at a finite number of value for
s. Said differently, if all the uncontrollable modes are asymptotically stable then the system is
stabilizable. Statements 3 and 4, provides LMI conditions for the stabilizability of the linear
system. Moreover, if statement 4 holds then a stabilizing state-feedback control law is given
by u(t) = Y P−1x(t).

Definition B.22 System (B.47) is completely observable if one of the following equivalent
statements holds:

1. For all t0, t1 ∈ T, x0, x1 ∈ X the state can be reconstructed from the knowledge of the
measured output y(t) over [t0, t1].

2. rank




C
CA
CA2

...
CAn−1




= n

3. For all α > 0, there exists P = P T � 0 and Y such that the LMIs hold

PA+ATP − Y C − CTY T ≺ −2αP P = P T � 0 (B.51)

Similarly as for the controllability, statement 2 and 3 provide a finite dimensional test for
complete controllability (global and unform). Statement 4 is a LMI condition to the existence
of an observer of the form

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)) (B.52)

and ensures that for all α > 0 the modes of the matrix A − LC are all smaller than −α.
Moreover a suitable observer gain is given by L = P−1Y .
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Definition B.23 System (B.47) is detectable if one of the following equivalent statements
holds:

1. rank
[
sI −A
C

]
= n for all s ∈ C+

2. There is no loss of rank while evaluating the rank condition rank
[
sI −A
C

]
at each

nonnegative eigenvalue of A.

3. There exists P = P T � 0 such that the LMIs hold

N T
C (ATP + PA)NC ≺ 0 P = P T � 0 (B.53)

4. There exists P = P T � 0 and Y such that the LMIs hold

PA+ATP − Y C − CTY T ≺ 0 P = P T � 0 (B.54)

As for stabilizability, it suffices to check that there is no loss of rank for all non asymptot-
ically stable modes only. Said differently, if all the non observable modes are asymptotically
stable then the system is detectable.

B.7 Control and Observation of Dynamical Systems

We present several processes, with different objectives, that can be synthesized in view of
controlling or estimating variables.

Control of dynamical systems

There are different way to control (and thus stabilize) a dynamical system. All of these
are based on a feedback loop which allows for the stabilization with simple controllers.

State-Feedback
u(t) = f(x(t)), u(t) = Kx(t)

Static Output-Feedback

u(t) = f(y(t)), u(t) = Ky(t)

Dynamic Output-Feedback

ẋc(t) = fc(xc(t), y(t))
u(t) = hc(xc(t), y(t))

where xc is the controller state.

Each controller can be classified in one of these classes, for instance consider a rotating
mechanical device where the angle of the rotation is measured and state is composed by the
angular velocity and the angle itself:

• A PD controller is a state-feedback
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• A proportional controller is a static output feedback

• A PID controller is a dynamic output feedback

The state-feedback is the easiest to synthesize since it is based on a full-information on
the system. Most of the systems can be stabilized by this way. Nevertheless, it is assumed
that all the states are known and may be difficult from a practical point of view, even using
an observer (for instance in large systems or due to unobservable states).

Static output feedback controllers are simple in their forms, they are just gains acting on
the measured output, but despite of their simplicity it is very difficult to synthesize them in
some framework. First of all, for a given measurement, many systems cannot be stabilized
by static output-feedback. Moreover, in the general case, the pole placement using such
controllers is a NP-Hard problem Blondel and Tsitsiklis [1997], Fu [2004] even in the linear
case. In the robust-control framework using Linear Matrix Inequalities, the synthesis of
static-output feedback controllers is still an open-problem.

Dynamic output feedback controllers are the most spread controllers used in industries,
it only relies on measured variables and its dynamic nature allows for improving robustness
margins and performances. There exists a lot of ways to synthesize such controllers. In the
robust control framework using LMIs, if the order of the controller equals the dimension of
the system, then the synthesis is simple and can be efficiently solved, in a reasonable time,
by computers (the synthesis problem admits a necessary and sufficient condition in terms of
LMI). Nevertheless, if the order of the controller is strictly less than the system, it becomes a
NP-Hard problem Scherer and Wieland [2005]; the static output feedback falls into this class
(controller of order 0).

Observation of dynamical systems

The role of the observer is to estimate a state (or a part of the state) from the knowledge
of the measured output and parts of the system inputs (such as the control input). The
second role of the observer is to filter the data in order to remove noises and/or to make the
estimate unperturbed by the external disturbances which do not affect this state. For sake of
brevity, only observers for linear dynamical systems are presented.

The most common structure of observers are called Luenberger’s observers corresponding
to system (B.47) and are of the form

˙̂x(t) = Ax̂(t) +Bu(t) + L(y(t)− Cx̂(t)−Du(t)) (B.55)

where x̂ is the state of the observer and estimate the state of the system, u, y are respectively
the control input and the measured output of the system. In this the value of L is sought
such that the estimation error x(t) − x̂(t) is asymptotically stable (i.e. x(t) − x̂(t) → 0 and
t→ +∞).

A more general form is given by

ż(t) = Mz(t) +Ny(t) + Su(t)
x̂(t) = z(t) +Hy(t)

(B.56)

where z(t) is the state of the observer. Note here that the state of the observer z(t) is different
from the estimate x̂(t) whenever y(t) 6= 0. Moreover the number of matrices to determine is
greater than in the previous and these additional degrees of freedom add flexibility compared
to the ’one-gain’ observer [Darouach et al., 1994].



262 CHAPTER 6. APPENDIX

There exist many classes of observer, let me mention the interesting class of reduced-
order observer for which only part of the state is estimated and the unknown-input observers
whose role is to estimate the state in presence of unknown inputs. They allow to decouple
the estimation error and the unknown-inputs [Koenig and Marx, 2004, Koenig et al., 2004].
Observers can also be used in order to estimate unknown inputs as shown in [Cherrier et al.,
2006] where inputs of a chaotic cryptography system are estimated.

All the controllers and observers presented above can be directly extended to the case of
nonlinear systems, but their structure is not general due to the high diversity of nonlinear dy-
namical systems. In this case, controllers and observers need to be adapted to the considered
system and remains an important challenge of nonlinear systems theory.

C Lq and Hq Spaces

This appendix is devoted to the introduction of very important signals and systems spaces.
Let us consider here linear systems of the form

ẋ(t) = Ax(t) + Ew(t)
z(t) = Cx(t) + Fw(t)

(C.57)

where x ∈ X ⊂ Rn, w ∈ W ⊂ Rp and z ∈ Z ⊂ Rq are respectively the state, the inputs and
the outputs of the system.

C.1 Norms for Signals

The functions of time x(t), w(t) and z(t) are generally referred as signals since these functions,
whatever they represent (temperature, speed, position. . . ), are considered in an abstract space
where the physical signification is not useful anymore. This is the reason why spaces of signals
must be considered and these spaces are called Lnq defined hereunder:

Lq :=

{
u ∈ F([0,+∞),Rn) :

(∫ +∞

0
||u(t)||qqdt

)1/q

<∞
}

(C.58)

Only signals with support [0,+∞] are considered here by simplicity but is possible to
define such sets for signals evolving over the more general support [t0, t1].

It is possible to associate a norm to each one of this signals set and is denoted by ||·||Lq and
called Lq norm (with a slight abuse). Recall that a norm satisfies all the following properties:

1. ||u||Lq ≥ 0

2. ||u||Lq = 0⇔ u(t) = 0 for all t ≥ 0

3. ||αu|||Lq = |α| · ||u||Lq

4. ||u+ v||Lq ≤ ||u||Lq + ||v||Lq where α is a constant

The Lq norm is then defined as

||u|||Lq :=
(∫ +∞

0
||u(t)||qqdt

)1/q

(C.59)

and hence a signal u(t) belongs to the space Lnq if and only if its Lq-norm is bounded. There
are three main norms for signals
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L1-norm The 1-norm of a signal u(t) is the integral of its absolute value

||u||L1 :=
∫ +∞

0
||u(t)||1dt (C.60)

In some papers and books, the L1 norm is treated as an electrical consumption. How-
ever, the L1 norm is rarely considered in the literature.

L2-norm The 2-norm of a signal u(t) is

||u||L2 :=
(∫ +∞

0
||u(t)||22dt

)1/2

(C.61)

From a physical point of view, the L2 norm represents the energy of a signal.

L∞-norm The L∞ norm of a signal is the larger upper bound of the absolute value

||u||L∞ := max
i

sup
t∈[0,+∞)

|ui(t)| (C.62)

The L∞ norm of a signal is the maximum value that the signals under some input
values. This norm is useful when the amplitude of signals needs to be constrained.

Remark C.1 If the second property of norms (i.e. there exists u(t) 6= 0 such that ||u||Lq = 0)
is not satisfied, the term semi-norm is used instead of norm. For instance the power of a signal
is a semi-norm and is referred in the literature as the power semi-norm:

||y||P := lim
T→+∞

1
T

∫ T

0
y(t)∗y(t)dt (C.63)

These spaces enjoy a non trivial inclusion relationship described by the following Venn
diagram depicted in Figure 6.1 inspired from Doyle et al. [1990].

For instance, let Z = R2 and W = R, no behavior is captured by these definitions. For
instance, if the system is L2 − L2 stable (for all L2 input, we have L2 outputs), then it
is possible to consider the sets L2(R+,R) and L2(R+,R2). Note that we cannot say W =
L2(R+,R) sinceW is an Euclidian space of dimension 2 while L2(R+,R) is a functional space
which is infinite dimensional.

C.2 Norms for Systems

While physical magnitudes can be viewed as signals only, the relation between these signals
and how they evolve in time (dynamical behavior) is called system. A system may be viewed
as a physical process but also as a (linear) operator mapping functional space to another. For
instance, system (C.57) maps the Euclidian space W to Z. Note that these spaces are not
functional spaces but Euclidian space containing values taken by input and output signals.
However, by considering these Euclidian spaces, only few information is considered and It is
possible (and more interesting) to capture greater information on the operator by considering
functional spaces instead. This is the role of Lq spaces: rather than considering functional
spaces where no constraints apply on elements, Lq spaces consider elements with a specific
(desired) behavior, allowing to tackle more information on the system and its related signals.
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F([0,+∞),Rn)

Ln∞

Ln1

Ln2

Figure 6.1: Inclusion of Signal Sets

By considering these norms, it seems interesting to develop a similar framework for systems
and this brings us to the notion of norms for systems denoted Hq. The letter H stands for
Hardy space and is defined for functions holomorphic over D as

Hq :=

{
f ∈ F(D,C) : f holomorphic over D and sup

0<r<1

(
1

2π

∫ 2π

0
[f(reıθ)]pdθ

)1/p

<∞
}

(C.64)
For 0 < p < q < ∞, it can be shown that Hq is a subset of Hp. Variations of the latter
definition exists for other domains than the unit open disc D, in our case the domain which
has to be considered in the right-half plane C+.

Definition C.2 H2-norm The H2-norm of a signal u(t) is

||H||H2 :=
(

trace
1

2π

∫ +∞

0
H(jω)H(jω)∗dω

)1/2

(C.65)

The H2 norm can be viewed as the maximal energy gain from the inputs to the outputs.

H∞-norm The H∞-norm of a signal is the least upper bound of its absolute value

||H||H∞ := max σ̄(H(jω)) (C.66)

The H∞ norm can be viewed as the maximal energy gain from the inputs to the outputs.

An important property of the H∞-norm is the submultiplicative property:

||M1M2||H∞ ≤ ||M1||H∞ ||M2||H∞ (C.67)

which has deep consequences in robustness analysis and robust control synthesis. Note that
some system norms do not satisfy such a property, for instance the H2 does not.
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It is worth noting that the H2 norm is the same as in Definition C.2. By the way, both
definitions coincide in the SISO case but the induced-norm version (norm of a system induced
by the norm of the input and output spaces) holds in the MIMO case and therefore defines
a generalization of Definition C.2. This is the reason why this extended version is called
Generalized H2 norm or L2 − L∞ induced norm.

To conclude this section, the great interest of induced norms are their domain of validity.
Indeed, the system norms are generally expressed in terms of functions over the frequency
domain (restricting the validity of the definitions over LTI systems only) and the signal
norms over the time domain (quite general framework). Hence, this duality allows for the
computation of norms of systems which are neither time-invariant nor linear by considering
the quotient of norms of the output signals space over norms of the input signal spaces. This
opens the doors to gain analysis of time-varying, parameter varying, nonlinear and distributed
systems. Therefore, the energy gain of time-varying system will then be referred as its L2-gain.
The correspondence between signal and system norms is summarized in Table 6.1.

||w||L2 ||w||L∞
||z||L2 ||H||H∞ ∞
||z||L∞ ||H||H2 ||H||H1

Table 6.1: Correspondence between norms of signals and systems

D Linear Matrix Inequalities

This appendix aims at providing a brief overview of Linear Matrix Inequalities (LMIs). A brief
history is given, then some preliminary definitions and methods to solve them are introduced.

D.1 Story

Historically, the first LMI appeared in the pioneering work of Lyapunov (actually its Ph.D
thesis in 1890) which was on the ’General Stability of Motion’ and where what is called ’the
Lyapunov’s theory’ is defined with its the fundamental tools. In this work, the stability of a
linear time-invariant dynamical systems ẋ = Ax is equivalent to the feasibility of the Linear
Matrix Inequality:

ATP + PA ≺ 0 P = P T � 0 (D.68)

In his work Lyapunov wrote down all the foundation of modern control theory and there-
fore remains, in this field, one of the major works since it has been developed. Since then,
many results have been grafted over it. Indeed, in 1940, Lu’re and Postnikov et al. applied
Lyapunov’ s theory to control problems involving nonlinearityin the actuator. This has lead
to Lu’re systems which are defined as

ẋ = Ax+Bφ(x) (D.69)

where φ(·) is a nonlinear function of x. Although the stability criteria ware not in a LMI
form (in reality they were polynomially frequency dependent inequalities), they actually were
equivalent to a LMI formulation. The bridge, which was unknown at this time, between
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frequency dependent inequalities and LMI has been emphasized in an important result derived
by Yakubovich, Popov, Kalman, Anderson. . . and is called the Positive Real Lemma (some
precision on it and its link to passivity are introduced in Appendix E.4). This positive real
lemma, reduces the solution of a LMI into simple graphical criterion in the complex plane
(which is linked to Popov, circle and Tsypkin criteria). In 1962, Kalman derived one of the
most important work of this century: the ’Kalman-Yakubovitch-Popov’ Lemma which bridges
completely graphical tests in the complex plane and a family of LMIs (see Appendix E.3) and
allows by now to switch easily from frequency domain to time-domain criteria.

In 1970, Willems focused on solving algebraic equations such as Lyapunov’s or Ricatti’s
equations (ARE), rather than LMIs. Indeed, the solvability was not well established at this
time and the numerical algebra was developed to solve algebraic equations rather than LMIs.
To understand the power of LMIs, it has been necessary to develop complex mathematical
tools and algorithms to solve them.

In 1919, the ’Ellipsoid Algorithm’ of Khachiyan was the first algorithm to exhibit a poly-
nomial complexity (polynomial bound on worst-case iteration count) for Linear Programming.
Linear Programming problems are optimization problems where the optimization cost and
constraints are all affine in the unknown variables. In 1984, Karmarkar introduced ’Interior
Point’ methods for LP which has lead to lower complexity and better efficiency than ellipsoidal
methods.

The particularity of LMIs is that, although the cost and the constraints are affine on the
unknown variables, the inequalities are not componentwise but represent the location of the
eigenvalues of the matrix inequality. Therefore, the problem is obviously non linear since the
location of the eigenvalues of a symmetric matrix depend on the sign of its principal minors.
By computing the principal minors of a LMI, it appears that we obtain a set of polynomial
scalars inequality and therefore is nonlinear. However, although the optimization problem is
non linear, it can be shown that the optimization problem is a convex problem, one of the
most studied field in optimization (see Boyd and Vandenbergue [2004]) and hence now LMI
benefits of a huge arsenal of solid tools.

In 1988, Nesterov, Nemirovskii and Alizadeh (see Nesterov and Nemirovskii [1994]) extend
IP methods for Semidefinite Programming (SDP) which is the class of problems where LMIs
belong. Since then, IP methods have been heavily developed and is now the most powerful
tools to solve numerically LMIs.

Finally, in 1994, the research effort on application of LMI to control culminated in Boyd
et al. [1994] where many other authors brought important contributions, for instance Apkar-
ian, Bernussou, Gahinet, Geromel, Peres. . .

Since then many solvers for SDP have been developed for instance SeDuMi Sturm [2001,
1999], DSDP, SDPT3. . . Since all this solvers have been developed for the mathematical frame-
work of SDP and since the representation of LMI in the field of automatic control is based on
a matrix representation, softwares called ’parsers’ have been developed as interface between
these notations, for instance SeDuMi Interface and the best one: Yalmip Löfberg [2004].

D.2 Definitions

A Linear Matrix Inequality (LMI) is an inequality of the form

L(x) := L0 +
m∑

i=1

Lixi � 0 (D.70)
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where x ∈ Rm is the variable and the symmetric matrix Li ∈ Sn, i = 1, . . . , n are given
data. The inequality symbol ≺ means that L(x) is positive definite (i.e. yTL(x)y > 0 for all
y ∈ Rn−{0}. This inequality is equivalent to m polynomial inequalities corresponding to the
leading minor of L(x).

The LMI (D.70) is a convex constraint on x: the subset {x ∈ Rm : L(x) � 0} is convex.
Multiple LMI L(1)(x) > 0, . . . ,L(q)(x) ≺ 0 can be expressed as a single LMI diag(L(1)(x) >

0, . . . ,L(q)(x)) � 0. This shows that the intersection of LMI constraints is also a LMI. This
can be connected with the property that the intersection of convex sets is also a convex set.

Notation (D.70) is the ’mathematical’ notation while the following is the notation used
by in the field of automatic control and system theory

ATP + PA ≺ 0 P = P T � 0 (D.71)

where the matrix P = P T � 0 is the variable and A ∈ Rn×n a given data. It is not possible
to give a general formulation of LMIs where matrices are variable since there is a large
variety of different forms. Nevertheless, any LMI in ’matrix variable’ form can be written
into the mathematical form (but the converse is not necessarily true). To write this, just
decompose P = P T � 0 over a basis of symmetric matrices of dimension n denoted by Pi.

Hence P := P (x) =
∑m

i=1 Pixi with m =
n(n+ 1)

2
. Finally by identification we get L0 and

Li = −ATPi − PiA.

Definition D.1 A LMI M(x) � 0 is feasible if said to be feasible if and only if there exists
x such that M(x) � 0. It is said to be strictly feasible if and only if there exists x such that
M(x) ≺ 0.

D.3 How to solve them ?

Several approaches allowing the determination of the solution of LMIs are presented here.

Algebraic Methods

In order to solve simple LMI, algebraic methods can be used using linear algebra. This
is possible when dealing with only few decision matrices. For instance, let us consider the
well-known Lyapunov stability LMI condition for linear time-invariant systems:

ATP + PA ≺ 0 (D.72)

Assume there exists P = P T � 0 such that the LMI is satisfied, i.e. the system ẋ(t) =
Ax(t) is asymptotically stable (all the eigenvalues of A lie in the left half complex plane).

Let P0 =
∫ +∞

0 eA
T tQeAtdt with some matrix Q = QT � 0 and inject the expression of P0

into the latter LMI, we get
∫ +∞

0
AT eA

T tQeAt + eA
T tQeAtAdt =

∫ +∞

0

d

dt

[
eA

T tQeAt
]
dt

= lim
t→+∞

eA
T tQeAt −Q

Since the system is asymptotically stable then limt→+∞ eA
T tQeAt = 0 an then a parametriza-

tion of the solutions of the LMI (D.72) is given by P0.
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It is clear that this method can become very complicated while dealing with LMIs of high
dimensions and with a large number of decision matrices.

Algorithms

At this time, Interior Points algorithms are mainly used. Simple algorithms are presented
in Boyd et al. [1994] while the complete theory of IP algorithms with barrier function, in an
unified framework, is detailed in the (very difficult to understand in detail for nonspecialists)
book Nesterov and Nemirovskii [1994]. The idea of barrier function is briefly explained here:

Consider the optimization problem:

min
x∈Rn

cTx

s.t. Fi(x) � 0, i = 1, . . . , p
(D.73)

where c ∈ Rn, x ∈ Rn and Fi(x) are respectively the cost vector, the decision variable and
the LMIs constraints. It is important to note that every LMI optimization problem can be
rewritten in the latter form.

The idea of interior point algorithm with barrier function, is to turn a constrained opti-
mization problem into an unconstrained one. By introducing the set

Xf := {x ∈ Rn : Fi(x) � 0, i = 1, . . . , p} (D.74)

the optimization problem (D.73) is equivalent to

min
x∈Xf

cTx (D.75)

The key idea to define implicitly the set Xf (since it is difficult and time consuming to
define it explicitly) is to define a function which is small in the interior of Xf and tends to
infinity for each sequence of points converging to the boundary of Xf . This function is called
a barrier function. It also important, for mathematical purpose, that this barrier function be
analytic (differentiable), convex and self-concordant. Indeed, if the barrier function is convex
then the optimization problem will be convex and hence the theory of convex optimization
applies. The differentiability of the barrier function (actually it must be C3) allows for the
computation of gradient and hessian in the iterative optimization procedure. Finally, the self-
concordance of a barrier function is a property, which has been introduced specifically in the
framework of SDP optimization, which guarantees nice convergence properties of the Newton
algorithm used to solve these unconstrained optimization problems. This notion has been
introduced in the book Nesterov and Nemirovskii [1994] and the definition is given below:

Let F (x) by function which is convex and analytic. It is said to be self-concordant with
parameter a if

|D3F (x)[h, h, h]| ≤ 2a−1/2(D2F (x)[h, h])3/2 (D.76)

in a metric defined by the hessian itself and

|DF (x)[h]| ≤ b(D2F (x)[h, h])3/2 (D.77)

where DkF (x)[h1, . . . , hk] is the kth differential of F taken at x along the collection of direction
[h1, . . . , hk]. The first inequality defines the Lipschitz continuity of the Hessian of the barrier
with respect to the local Euclidian metric defined by the Hessian itself. The second inequality
defines the Lipschitz continuity of the barrier itself with respect to the same local Euclidian



E. TECHNICAL RESULTS IN ROBUST ANALYSIS, CONTROL AND LMIS 269

structure. The signification of term self-concordant is not easy to see. The first idea could
be that the absolute value of the third derivative is bounded by a function of the second
one. This establishes a link between them and shows that the third order term in the Taylor
expansion can always be bounded by the second order term. Another idea is that the third
order derivative can be approximated by an expression involving the the Hessian.

A good barrier function for SDP is the logarithmic barrier

f(x) = − log detF (x) = log detF (x)−1 (D.78)

This function is analytic, convex and self-concordant on {x : F (x) � 0}.
Finally the constrained optimization problem (D.73) (and equivalently (D.75)) is converted

into the unconstrained optimization problem

min
x∈Rn

cTx+ log detF−1(x) (D.79)

Finally, the Newton algorithm is used to find the solution of the optimization problem
(D.79). It can be shown that the optimum of (D.79) coincides with the optimum of (D.75)
and therefore no modification of the problem is done when adding the self-concordant barrier
function to the cost.

The Newton algorithm aims to find zeros of functions, say f(x) and the iteration procedure
is

xk+1 = xk − [∇2f(x)]−1∇f(x) (D.80)

where ∇2f(x) and ∇f(x) are respectively the Hessian and the gradient of f evaluated at x.
Despite of its apparent simplicity, this iteration procedure converges quadratically provided
that the initial condition x0 belongs satisfies

L

2m2
||f ′(x0)||2 < 1 (D.81)

where L is the Lipschitz continuity constant of the Hessian and m is defined as hT f ′′(x)h ≥
m||h||22. It can be shown that in the case of unconstrained optimization with self-concordant
barrier functions, the Newton procedure can find very efficiently the global optimum of opti-
mization problems (D.73)-(D.79).

In Nesterov and Nemirovskii [1994], it is shown that for every allowable xi (i.e. xi ∈ Xf )
the next value xi+1 remains in Xf (is allowable too) and f(xi+1) ≤ f(xi). Then for a good
initialization of the iterative procedure, it suffices to find a point in Xf . For this purpose,
most solvers implement an initialization procedure resulting in the determination of an initial
feasible point from which the optimum of the optimization problem can be easily computed.

E Technical Results in Robust Analysis, Control and LMIs

This appendix aims at providing a catalog of important definitions and theorems extensively
used in the literature.

Let us consider multivariable finite dimensional linear time-invariant systems of the form:

Z(s) = H(s)W (s) (E.82)

where s stands for the Laplace variable, H(s) the transfer function of the system and W (s),
Z(s) are respectively the input and the output.
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Assume that (E.82) admits the following minimal realization Σl:

ẋ(t) = Ax(t) +Bw(t)
z(t) = Cx(t) +Dw(t)

(E.83)

where x ∈ X ⊂ Rn, w ∈ W ⊂ Rp and z ∈ Z ⊂ Rq are respectively the state, the inputs and
the outputs.

E.1 Dissipative Systems and Supply Rates

The dissipativity is a theory devoted to study the stability of a non-autonomous systems of
any kind. The main principle of the theory is really simple: let us consider the general system
Σ governed by the equations

ẋ(t) = f(x,w)
z(t) = h(x,w)

(E.84)

where x ∈ X ⊂ Rn, w ∈ W ⊂ Rp and z ∈ Z ⊂ Rq are respectively the state, the inputs and
the outputs.

Let s(w, z) be a mapping from W × Z → R. It is assumed that for any t0, t1 ∈ R and
for all input-output pairs (w, z) satisfying (E.84), the function s(w, z) is absolutely integrable
(i.e.

∫ t1
t0
|s(w(t), z(t))|dt < ∞). This mapping is referred as the supply function and its

meaning will be detailed just after the following definition:

Definition E.1 The system (E.84) with supply function s is said to be dissipative if there
exists a function V : X → R such that

V (x(t0)) +
∫ t1

t0

s(w(t), z(t))dt ≥ V (x(t1)) (E.85)

for all t0 ≤ t1 and all signals (w, x, z) which satisfies (E.84). The pair (Σ, s) is said to be
conservative if the equality holds for all t0 ≤ t1 and all signals (w, x, z) which satisfies (E.84).

The supply-rate s should be interpreted as the supply delivered to the system. This means
that s(w, z) represents the rate at which supply circulates into the system if the pair (w, z) is
generated. Hence, when the integral

∫ T
0 s(w(t), z(t))dt is positive then the work is done on the

system while the work is done by the system when the integral is negative. The function V is
called the storage function and generalizes the notion of an energy for a dissipative system.

Thanks to this interpretation, inequality (E.85) says that for any interval [t0, t1], the
change of internal storage V (x(t1)) − V (x(t0)) will never exceed the amount of supply that
flows into the system. This means that part of what is supplied is stored while the remaining
part is dissipated.

For more details on dissipativity and dissipative systems, please refer to Scherer and
Weiland [2004].

E.2 Linear Dissipative Systems and Quadratic Supply Rates

We detail here the special case of linear system governed by expressions (E.83). Suppose that
x∗ = 0 is the point of neutral storage and consider quadratic supply functions s :W×Z → R
defined by
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s(w(t), z(t)) =
[
w(t)
z(t)

]T [
Q S
ST R

] [
w(t)
z(t)

]
(E.86)

We provide here the essential result about dissipativity of linear systems with quadratic
supply rate.

Theorem E.2 Suppose that system Σl defined by (E.83) is controllable and let the supply
function be defined by(E.86). Then the following statements are equivalent:

1. (Σl, s) is dissipative

2. (Σl, s) admits a quadratic storage function V (x) = xTPx with P = P T

3. There exists P = P T such that

F (P ) :=
[
ATP + PA PB

? 0

]
−
[

0 I
C D

]T [
Q S
ST R

] [
0 I
C D

]
� 0 (E.87)

4. For all ω ∈ R with det(jωI − A) 6= 0, the tranfer function H(s) = C(sI − A)−1E + F
satisfies [

I
H(jω)

]∗ [
Q S
ST R

] [
I

H(jω)

]
� 0 (E.88)

The proof can be found in Scherer and Wieland [2005].

E.3 Kalman-Yakubovich-Popov Lemma

The Kalman-Yakubovitch-Popov lemma shows that, amongst others, the frequency condition
given by Popov is equivalent to the existence of a Lyapunov function. This is a very important
result in linear system theory. Some important considerations are provided in Rantzer [1996],
Scherer and Wieland [2005], Willems [1971], Yakubovitch and references therein.

Lemma E.3 For any triple of matrices A ∈ Rn×n, B ∈ Rn×m and M =
[
M11 M12

MT
12 M22

]
∈

Sn+m, the following statements are equivalent:

1. There exists a symmetric matrix P = P T such that

M +
[
I 0
A B

] [
0 P
P 0

] [
I 0
A B

]
≺ 0 (E.89)

2. M22 ≺ 0 and for all ω ∈ R and complex vectors col(x,w) 6= 0

[
A− jωI B

] [ x
w

]
= 0 implies

[
x
w

]∗
M

[
x
w

]
< 0 (E.90)

If (A,E) is controllable, the corresponding equivalence also holds for non-strict inequalities.
Finally, if

M = −
[

0 I
C D

]T [
Q S
ST R

] [
0 I
C D

]
(E.91)
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then statement 2 is equivalent to the condition that for all ω ∈ R, with det(jωI − A) 6= 0 we
have

[
I

C(jωI −A)−1B +D

]∗ [
Q S
ST R

] [
I

C(jωI −A)−1B +D

]
� 0 (E.92)

The KYP-lemma establishes a relation between the frequency domain analysis and a linear
matrix inequality expressed in the time-domain. This proves that geometric considerations
is the complex plane (such as Popov’ criterion, circle criterion. . . ) have time-domain coun-
terparts which can be expressed through linear matrix inequalities, or equivalently algebraic
Ricatti inequalities. Another interesting fact is that, it turns a semi-infinite matrix inequal-
ity (due to the frequency variable ω ∈ [0,+∞)) into a finite dimensional matrix inequality
involving a finite dimensional variable P = P T � 0. Another examples follow.

E.4 Positive real lemma

The positive real lemma is highly related to the passivity of a system and has played a crucial
role in questions related to the stability of control systems and synthesis of passive electrical
networks.

An LMI formulation to passivity can be derived using the dissipativity framework by
considering the supply function s(w, z) = zTw + wT z. This leads to:

Lemma E.4 System (E.83) is passive (or positive real) if and only if there exists a matrix
P ∈ Sn++ such that

[
ATP + PA PB − CT

? −(D +DT )

]
≺ 0 (E.93)

Then for all ω ∈ R with det(jωI −A) 6= 0 one has H(jω)∗ +H(jω) � 0.
Moreover, V (x) = xTPx defines a quadratic storage function if and only if P satisfies

LMI (E.93).

Proof : The proof is an application of the Kalman-Yakubovicth-Popov lemma with quadratic
supply function s(w, z) = wT z + zTw. �

E.5 H2 Performances

The H2 norm of a system measures the output energy in the impulse responses of the system.

Lemma E.5 Suppose system (E.83) with F = 0 is asymptotically stable. Then ||H||H2 < ν
if and only if there exists P = P T � 0, Z and ν > 0 such that

[
ATP + PA PB

BTP −I

]
≺ 0

[
P CT

C Z

]
� 0 trace(Z) < ν2 (E.94)

Proof : See Scherer and Wieland [2005]. �
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E.6 Generalized H2 performances

The generalized H2 performance is defined as the L2−L∞ induced norm. The system is then
defined as an operator from the set of signals of bounded energy to set of signals with finite
amplitude (energy to peak norm). In the scalar case, L2 − L∞ induced norm coincides with
the H2 norm which is the reason why it is called generalized H2 norm.

Lemma E.6 Suppose system (E.83) with F = 0 is asymptotically stable. Then ||H||L2,L∞ <
ν if and only if there exists P = P T � 0 and ν > 0 such that

[
ATP + PA PB

BTP −νI

]
≺ 0

[
P CT

C νI

]
� 0 trace(Z) < ν2 (E.95)

Proof : See Scherer and Wieland [2005]. �

E.7 Bounded-Real Lemma - H∞ Performances

The bounded real lemma is a well known lemma allowing for the computation of the H∞
norm of a linear system. It can be obtained in the dissipativity framework while considering
the supply function s(w, z) = γwTw − γ−1zT z.

Lemma E.7 System (E.83) is asymptotically stable if and only if there exists P ∈ Sn++ and
γ > 0 such that 


ATP + PA PB CT

? −γI DT

? ? −γI


 ≺ 0 (E.96)

Then for all ω ∈ R with det(jωI − A) 6= 0 one has H(jω)∗H(jω) � γ2I. Moreover, V (x) =
xTPx defines a quadratic storage function if and only if P satisfies LMI (E.96).

Proof : The proof is an application of the Kalman-Yakubovicth-Popov lemma with quadratic
supply function s(w, z) = γwTw − γ−1zT z. �

This result is extremely important and has brought to lots of works in systems and control
theory. As a first interpretation, it implies that we have the following relation

||z||L2 ≤ γ||w||L2 (E.97)

and thus γ is the energy gain of the system. This means that for an input of unit energy,
the energy of the output is less than γ. Moreover, in the time-invariant case, it is possible to
show that the L2 induced norm coincides with the H∞ norm of the system.

The bounded real lemma is a useful tool in robust control since the H∞ norm is sub-
multiplicative which means that for two asymptotically stable transfer functions M1(s) and
M2(s), the following relation holds:

||M1(s)M2(s)||∞ ≤ ||M1(s)||∞ · ||M2(s)||∞
This can be modified to have the useful implication for α, β > 0:

||M1(s)||∞ < β/α and ||M2(s)||∞ < α⇒ ||M1(s)M2(s)||∞ < β

which is the basis of small-gain theorem (see Appendix E.10).
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E.8 L∞ − L∞ Performances

The L∞ induced norm is also called peak to peak norm since it considers the system as
an operator from the set of signals with finite amplitude to another set of signals of finite
amplitude.

Lemma E.8 Consider system (E.83) then if there exists P = P T > 0 and scalars α, β > 0
such that

[
ATP + PA+ αP PB

BTP −βI

]
� 0



αP 0 CT

0 (α− β)I DT

C D αI


 � 0 (E.98)

then the peak-to-peak norm of the system is lower than α: ||H||L∞−L∞ < α.

Proof : See Scherer and Wieland [2005]. �

E.9 S-procedure

The S-procedure allows to deal with implications in the LMI framework. Indeed, we aim to
express the following problem

for all ξ ∈ Rn such that ξTMiξ ≤ 0, i = 1, . . . , N ⇒ ξTM0ξ < 0 (E.99)

as an LMI problem.
It is obvious that if there exists scalars τ1, . . . , τN ≥ 0 such that

M0 −
N∑

i=1

τiMi ≺ 0 (E.100)

then (E.99) holds. The converse is not true in general unless N = 1 for real valued problems
or N = 2 for complex valued problems.

Despite of its conservatism, it is a very useful tool in robust analysis and control theory
and plays a crucial role in the full-block S-procedure (in some sense) Scherer [2001], IQC
framework Rantzer and Megretski [1997], Lu’re systems. . .

E.10 Small Gain Theorem

Let us consider the interconnection depicted on figure 6.2

H(s)

∆(s) �

?
-j-

−

+

Figure 6.2: Interconnection of systems



E. TECHNICAL RESULTS IN ROBUST ANALYSIS, CONTROL AND LMIS 275

It is clear that the closed-loop system Hcl(s) =
H(s)

1 + ∆(s)H(s)
and hence the H∞ norm of

the closed-loop system can be bounded as

||Hcl||H∞ ≤
||H||H∞

1− |∆H||H∞
(E.101)

It is well-known that the closed-loop system is stable if and only if ||∆H||H∞ < 1. It
is not difficult to verify that ∆H satisfies this property by using standard LMI arguments
(see the computation of H∞-norm in Appendix E.7). Let us assume, for some reasons, the
computation of the H∞-norm of the product ∆H cannot be performed.

Since the H∞-norm is submultiplicative then we have the inequality

||Hcl||H∞ ≤
||H||H∞

1− ||H||H∞ · ||∆||H∞
(E.102)

and hence the closed-loop is asymptotically stable if ||H||H∞ ·||∆||H∞ < 1 Therefore if it possi-
ble to compute (estimate) the H∞ norm of ∆(s) then the closed-loop system is asymptotically
stable if

||H||H∞ ≤
1

||∆||H∞
(E.103)

Assuming that H(s) admits realization (A,B,C,D), it is easy to determine the stability
sufficient condition is given by the Small-Gain Thorem:

Theorem E.9 The closed-loop system is stable if there exist P = P T � 0 such that the LMI
holds 


ATP + PA PB CT

? −I DT

? ? −I


 ≺ 0 (E.104)

Due to the use of the submultiplicative property of the H∞ norm, stability conditions are
sufficient only and are in many cases, very conservative.

E.11 Scalings and Scaled-Small Gain theorem

In order to reduce the conservatism of the small-gain theorem which takes into account
norms only, some scalings are introduced in the loop. These scalings do not modify the
interconnection but allows for a reduction of conservatism. Let us consider an uncertain
square matrix ∆ containing, for simplicity, unknown real valued parameters ρi and full-blocks
gathered on the diagonal:

∆ = diag(∆s,∆f )
∆s := diagi(ρiIsi)
∆f := diagi(Fi)

(E.105)

where si is the number of occurrence of scalar parameter ρi and Fi are full-blocks.
The idea is to capture the structure of the uncertain matrix ∆ by a matrix commutation

property
L∆ = ∆L

which can also be defined by an identity relation

∆ = L−1∆L
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The set of scalings corresponding to the uncertain structure ∆ is defined by

S(∆) := {L ∈ S++ : L∆ = ∆L} (E.106)

This set enjoys the following properties:

1. I ∈ S(∆) and therefore the small-gain is a particular case (more conservative) of this
approach.

2. L ∈ S(∆) =⇒ LT ∈ S(∆)

3. L ∈ S(∆) =⇒ L−1 ∈ S(∆)

4. L1 ∈ S(∆), L2 ∈ S(∆) =⇒ L1L2∆ = ∆L1L2 not that the matrix L1L2 is not necessarily
symmetric.

5. S(∆) is a convex subset of Rk where k is the dimension of Delta.

The structure of L ∈ S(∆) can be expressed easily by

L = diag(Ls, Lf )
Ls = diagi(Lsi ), L

s
i ∈ Ssi

++

Lf = diagi(liIni)
(E.107)

where ni is the size of square full-block Fi.
Using this scaling it is possible modify the small-gain theorem into another refined version

called Scaled-Small Gain Theorem

Theorem E.10 The closed-loop system is stable if there exist P = P T � 0 and L ∈ S(D)
such that the following LMI holds



ATP + PA PB CTL

? −L DTL
? ? −L


 ≺ 0 (E.108)

Despite of the conservatism reduction, this result is still conservative since it stills con-
siders the norm of the operator and it would be more interesting to capture a more complex
(complete) set of uncertainty. Actually the scaled-small gain can be obtained in the dissipa-
tivity framework by considering a supply-function:

s(w(t), z(t)) = w(t)TLw(t)− z(t)TLz(t)

for some L which satisfies L−∆TL∆ � 0.

E.12 Full-Block S-procedure

The Full-Block S-procedure unifies all the frameworks of scalings into a single one, where
small-gain and scaled-small gain results are particular cases only.

The full-block S-procedure considers a full-block supply-function of the form

s(w(t), z(t)) =
[
w(t)
z(t)

]T [
Q S
ST R

] [
w(t)
z(t)

]
(E.109)



E. TECHNICAL RESULTS IN ROBUST ANALYSIS, CONTROL AND LMIS 277

such that ∫ +∞

0
s(w(t), z(t))dt ≥ 0

Hence we have the following theorem:

Theorem E.11 The closed-loop system is stable if there exist P = P T � 0, Q = QT ≺ 0
and R = RT � 0 and S such that the LMIs

[
ATP + PA PB

? 0

]
+
[

0 CT

I DT

] [
Q S
? R

] [
0 I
C D

]
≺ 0 (E.110)

[
∆
I

]T [
Q S
? R

] [
∆
I

]
� 0 (E.111)

hold.

E.13 Dualization Lemma

The dualization lemma (which has been discovered simultaneously but separately in Scherer
[1999] and Iwasaki and Hara [1998]) allows to turn an LMI into another equivalent one
provided that some strong assumptions are satisfied:

Lemma E.12 Let M ∈ Sn nonsingular and S ∈ Rn×p with rank(B) = p such that n−(M) =
rank(B) = p then the following statements are equivalent:

1. The LMI STMS ≺ 0 holds

2. The LMI S⊥TM−1S⊥ ≺ 0 holds where S⊥ is a basis of the orthogonal complement of
Im(S) (i.e. STS⊥ = 0).

At first sight, this result may seem superfluous, but actually it is very useful in the
robust/LPV control context. Indeed, when using multipliers to study systems expressed
through LFR, it has the property of decoupling data matrices from multipliers and Lyapunov
matrix, making the problem convex (see for instance Scherer [1999], Wu [2003]).

Nevertheless, the rank constraint provides a very strong condition and such lemma is
difficult to apply to other type of systems. For instance, by considering time-delay systems
and the Lyapunov-Krasovskii theorems, the rank condition is not satisfied due to a high
number of Lyapunov matrices.

E.14 Bounding Lemma

The bounding lemma de Souza and Li [1999], Xie et al. [1992] is used to remove uncertainties
from matrix inequalities in the robust analysis/control framework. It deals with both real
and complex parameter uncertainties. We provide here the real version of the result:

Lemma E.13 Let Ψ ∈ Sn a symmetric matrix and P ∈ Rm×n, Q ∈ Rp×n and ∆(t) ∈ ∆ be
an uncertain matrix (possibly time-varying) with

∆ := {∆(t) ∈ Rm×p : p ≤ m, ∆T∆ ≤ R, R > 0}

then the following statements are equivalent:
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1. The LMI
Ψ + P T∆(t)Q+QT∆(t)TP ≺ 0 (E.112)

holds for all ∆(t) ∈∆

2. There exists a scalar ε > 0 such that the LMI

Ψ + εP TRP + ε−1QTQ ≺ 0

holds.

Proof : It seems interesting to provide the proof of this result. It is actually an old (and
interesting result) and then the proof is not simple to find since, generally, provided references
are not original one. The original paper which has provided for the first time this result is
[good question, I am still looking for it]. Moreover, most of the technical results involved in the
proof can be found in Khargonekar et al. [2001], Petersen [1987]. Without loss of generality,
let us consider for simplicity here that R = I.

Sufficiency:

Assume that matrices Ψ, P and Q in contain decision matrices such that (E.112) is a
LMI, and let us denote all of them in a compact form DM . Suppose that exists DM = Ds

M

and ε > 0 such that Ψ + εP TP + ε−1QTQ ≺ 0 holds.
We immediately need the following well-known fact

Proposition E.14 For any matrices X and Y with appropriate dimensions, we have XTY +
Y TX � βXTX + β−1Y TY, for any β > 0. The latter inequality can be viewed as a
consequence of the inequality (β−1/2X − βY )T (β−1/2X − β1/2Y ) � 0.

Whatever the inertia of the matrix inequality Ψ + P T∆(t)Q+QT∆(t)TP , there always a
scalar ε > 0 such that

Ψ + P T∆(t)Q+QT∆(t)TP � Ψ + εP TP + ε−1QTQ for someε > 0 (E.113)

Hence by assumption, the left-hand side is negative definite. The sufficiency is shown.

Necessity:

Before showing the necessity we need the following results whose proofs can be found in
Petersen [1987].

Lemma E.15 Given any x ∈ Rn we have

max
∆(t)∈∆

{
(xTM1M2∆(t)M3x)2

}
= xTM1M2M

T
2 M1xx

TMT
3 M3x

where M1 = MT
1 .

Lemma E.16 Let X,Y and Z be given r × r matrices such that X � 0, Y ≺ 0 and Z � 0.
Furthermore, assume that

(ξTY ξ)2 − 4(ξTXξξTZξ) > 0

for all ξ ∈ Rr with ξ 6= 0. Then there exists a constant λ > 0 such that

λ2X + λY + Z ≺ 0
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The proof of sufficiency follows the same lines as the proof of theorem 2.3 of Petersen
[1987] and is recalled here.

Assume that there exists DM = Dn
M such that

Ψ + P T∆(t)Q+QT∆(t)TP ≺ 0

holds and that the LMI is satisfied for the nominal system (i.e. Delta(t) = 0) and therefore
ΨSn−−. Thus we have

Ψ ≺ −P T∆(t)Q−QT∆(t)TP
xTΨx < −2xTP T∆(t)Qx, for allx ∈ Rn
xTΨx < −2 max∆(t)∈∆{xTP T∆(t)Qx}
(xTΨx)2 > 4 max∆(t)∈∆{(xTP T∆(t)Qx)2}

(E.114)

By application of lemma E.15 with M1 = I, M2 = P T and M3 = Q, we get

(xTΨx)2 > 4xTP TPxxTQTQx
(xTΨx)2 − 4xTP TPxxTQTQx > 0

(E.115)

Note that P TP � 0, QTQ � and Ψ ≺ 0 hence lemma E.16 applies with Y = Ψ, X = P TP
and Z = QTQ. Therefore there exists λ > 0 such that

λ2P TP + λΨ +QTQ ≺ 0 (E.116)

Finally, multiplying the latter inequality by λ−1 and letting ε = λ−1 we get inequality

Ψ + εP TP + ε−1QTQ ≺ 0 (E.117)

This concludes the proof of sufficiency. �
There also exist a ’dual’ version of the previous lemma where the uncertainty satisfies

∆(t)∆(t)T < R in the case m ≤ p. In this case we obtain

Lemma E.17 Let Ψ ∈ Sn a symmetric matrix and P ∈ Rm×n, Q ∈ Rp×n and ∆(t) ∈ ∆′ be
an uncertain matrix (possibly time-varying) with

∆′ := {∆(t) ∈ Rm×p : m ≤ p, ∆∆T ≤ R, R > 0}

then the following statements are equivalent:

1. The LMI
Ψ + P T∆(t)Q+QT∆(t)TP ≺ 0

holds for all ∆(t) ∈∆′

2. There exists a scalar ε > 0 such that the LMI

Ψ + εP TP + ε−1QTRQ ≺ 0

holds.
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The bounding lemma can neither be used to deal with rational uncertainties nor dynamical
operators (such as dynamical systems or infinite dimensional operators. . . ). This is the main
drawback of the bounding lemma but, on the other hand, it provides simple and easy to use
results in many cases and this motivates its utilization in many works. The bounding-lemma
provides the same result as the scaled-small gain for one single full uncertainty block. We
aim to show that with this framework it is possible to retrieve and small-gain like and the
full-block multiplier results.

Equivalence with scaled-small gain

In the scaled-small gain result, the uncertainty are assumed to satisfy the commutative
relation

L∆ = L∆, L = LT � 0 (E.118)

and therefore we have ∆ = L−1∆L. Finally, we get the following result:

Lemma E.18 Let Ψ ∈ Sn a symmetric matrix and P ∈ Rm×n, Q ∈ Rp×n and ∆(t) ∈ ∆ be
an uncertain matrix (possibly time-varying) with

∆1 := {∆(t) ∈ Rm×p : p ≤ m, ∆T∆ ≤ I}

then the following statements are equivalent:

1. The LMI
Ψ + P T∆(t)Q+QT∆(t)TP ≺ 0

holds for all ∆(t) ∈∆

2. The LMI
Ψ + P TL−1∆(t)LQ+QTLT∆(t)TL−TP ≺ 0

holds for all ∆(t) ∈∆1 and some L ∈ S(∆).

3. There exists a scalar L̃ ∈ S(∆) such that the LMI

[
Ψ + P T L̃P QT L̃

? −L̃

]
≺ 0 (E.119)

holds.

Proof : The equivalence between the first and second statement is done by replacing ∆ by
L−1∆L. The third statement is obtained by similar argument than for obtaining statement
two of lemma E.17. Then a change of variable L̃ ← εL and a Schur’s complement leads to
LMI (E.119). �

To see clearly the equivalence with the scaled-small gain, let us consider system

ẋ = (A+B∆C)x (E.120)

which can be rewritten as an interconnection depicted in Figure 6.2 where H(s) = C(sI −
A)−1B.
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The robust stability of the system is ensured if there exists P = P T � 0 such that the
LMI

(A+B∆C)TP + P (A+B∆C) ≺ 0

holds. This LMI can be rewritten in the form

Ψ + PT∆(t)Q+QT∆(t)TP ≺ 0

where Ψ = ATP + PA, PT = PB and Q = C. Apply lemma E.18, we obtain

[
Ψ + P T L̃P QT L̃

? −L̃

]
≺ 0 (E.121)

which is identical to [
ATP + PA+ PBL̃BTP CT

? −L̃

]
≺ 0 (E.122)

A Schur complement on the latter inequality and letting L̃′ = L̃ (see properties of the set
S(∆)) leads 


ATP + PA PB CT L̃′

? −L̃′ 0
? ? −L̃′


 ≺ 0 (E.123)

which is exactly the scaled bounded real lemma.

Equivalence with full-block S-procedure

Let us consider the set of uncertainties ∆q defined by

∆q :=

{
∆ ∈ Rm×p : p ≤ m,

[
∆
I

]T [
U V
? W

] [
∆
I

]
� 0

}
(E.124)

Now consider equation (E.112) and rewrite it into

Ψ +
[
P T QT

] [ 0 ∆(t)
∆(t)T 0

] [
P
Q

]
≺ 0 (E.125)

We need to transform the quadratic inequality defining the set ∆q. Note that in virtue
of the dualization lemma (Scherer [1999] or Appendix E.13) we have

[
−I
∆T

]T [
xU V
? W

]−1 [ −I
∆T

]
≺ 0

Let
[
U V
? W

]−1

=
[
Ũ Ṽ

? W̃

]
and expand the latter inequality yields

[
−I
∆T

]T [
Ũ Ṽ

? W̃

] [
−I
∆T

]
= Ũ − Ṽ∆T −∆Ṽ T + ∆W̃∆T ≺ 0

= (∆− Ṽ W̃−1)W̃ (∆T − W̃−1Ṽ T ) + Ũ − Ṽ W̃ Ṽ T ≺ 0
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Since W̃ � 0 and Ũ ≺ 0 then Ũ − Ṽ W̃ Ṽ T ≺ 0. Let U ′ = Ũ − Ṽ W̃ Ṽ T , V ′ = Ṽ W̃−1 and
W ′ = W̃−1 hence the latter inequality is equivalent to

(∆− V ′)(W ′)−1(∆T − V ′T ) + U ′ ≺ 0

A Schur complement yields [
U ′ ∆− V ′
? −W ′

]
≺ 0

and finally we have [
0 ∆
? 0

]
≺
[
−U ′ V ′

? W ′

]

Now inject the bound on matrix
[

0 ∆
? 0

]
into inequality (E.125) leads to

Ψ +
[
P T QT

] [ −U ′ V ′

? W ′

] [
P
Q

]
≺ 0 (E.126)

Despite of the apparent difference with results obtained from the full-block S-procedure
, they are actually identical. We have used a linearization procedure which has turned the
quadratic definition of the uncertainty set into a linear definition. This linear definition has
been used to bound the uncertainty into the LMI. A similar result has been provided in
Scherer [1996].

E.15 Schur’s complement

The Schur complement Boyd et al. [1994] allows to exhibit convex linear matrix inequalities
from nonlinear matrix inequality apparently nonconvex.

Lemma E.19 The following statements are equivalent:

1. M =
[
M11 M12

MT
12 M22

]
≺ 0

2. M11 ≺ 0 and M22 −MT
12M

−1
11 M12 ≺ 0

3. M22 ≺ 0 and M11 −M12M
−1
22 M

T
12 ≺ 0

It is difficult to see that statements 2 and 3 provides convex inequalities. But in virtue of
this lemma, they can be cast as a convex linear constraints in Mij which is useful in the LMI
framework.

It is important to say that when a matrix is positive definite then all its Schur complement
must be positive definite. The following example shows a trap of the Schur complement.

Example E.20 Let us for instance consider the following LMI:


−ETPE −Q ATP Q

? −P 0 0
? ? −Q


 ≺ 0 (E.127)
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where P = P T � 0, Q = QT � 0 and E,A are square. Is this LMI satisfied ? First of all,
the diagonal terms must be negative definite: this is the case, due to the assumptions on the
matrices. However, by performing the Schur complement with respect to the right-lower block
we obtain the two underlying inequalities:

−Q ≺ 0[
−ETPE ATP

? −P

]
≺ 0

(E.128)

While the first equality is satisfied, the second may be not satisfied if E is not of full rank
since in this case the term ETPE would have zero eigenvalues.

This example shows that Schur complements should be used with care.
There also exists a non-strict version of the Schur complement Boyd et al. [1994].

Lemma E.21 The following statements are equivalent:

1. M =
[
M11 M12

MT
12 M22

]
� 0

2. The following relations hold

R � 0, M11 −M12M
+
22M

T
12 � 0, S(I −M22M

+
22) = 0

where M+
22 is the Moore-Penrose pseudoinverse of M22.

E.16 Finsler’s Lemma

The Finsler’s lemma Skelton et al. [1997] is a very useful tool in robust control and is defined
below:

Lemma E.22 The following statements are equivalent:

1. xTMx < 0 for all x ∈ X := {x ∈ Rn : Bx = 0}

2. BT
⊥MB⊥ ≺ 0

3. There exists a scalar τ ∈ R such that M − τBTB ≺ 0 and if such τ exists, it must
satisfy

τ > τmin := λmax([DT (M −MB⊥(BT
⊥MB⊥)−1B⊥M)D]

where D := (BrBT
l )−1/2B+

l with (Br, Bl) is any full rank factor of B (i.e. B = BlBr).

4. There exists an unconstrained matrix N such that

M +NTB +BTN ≺ 0

5. There exists a matrix W ∈ Sn+m
+ and a scalar τ > 0 such that

[
M BT

B −τIm

]
≺W rank(W ) = m
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The last statement has been recently added in Kim and Moon [2006] to deal with reduced-
order output feedback and constrained controllers Kim and Moon [2006], Kim et al. [2007].

There also exists a matrix version of statement 3 Skelton et al. [1997] where the scalar τ
is replaced by a matrix, say X ∈ S, such that M +BTXB ≺ 0.

If the matrix N is constrained then the equivalence is lost and statement 4 implies the
others only.

E.17 Generalization of Finsler’s lemma

A generalization of the Finsler’s lemma has been provided in [Iwasaki, 1998, Scherer, 1997]
and is recalled here. Indeed, the Finsler’s lemma is generally applicable when the matrix B
is known and hence the basis of the null-space can be easily computed. The generalization
allows for the use of unknown matrices.

Lemma E.23 Let matrices M = MT , B and a compact subset of real matrices K be given.
The following statements are equivalent:

1. for each K ∈ K
xTMx < 0, ∀ x 6= 0 s.t. KFx = 0

2. there exists Z = ZT such that

M + F TZF ≺ 0
Ker[K]TZKer[K] � 0 ∀ K ∈ K (E.129)

Proof : Suppose 1) holds. Choose K ∈ K arbitrarily then in virtue of the Finsler’s lemma
(Appendix E.16) there exists a real scalar τ such that

M + τF TKTKF ≺ 0

Since K is compact then τ can be chosen independently of K. Hence we have

M ≺ −F TSF ∀ S ∈ {τKTK : K ∈ K}

It has been shown in [Iwasaki, 1998] that the latter inequality is equivalent to the existence of
a symmetric matrix Z such that

M + F TZF ≺ 0 and − Z � τKTK, ∀ K ∈ K

Then performing a congruence transformation on the second inequality with respect to Ker[H]
yields

Ker[K]TZKer[K] � 0 ∀ K ∈ K
Suppose now 2) holds. Set x 6= 0 and K ∈ K such that KFx = 0. Then it is possible to

find η such that Fx = Ker[K]η and hence we have

xT (M + F TZF )x < 0
xTMx < −xTF TZFx < −ηTKer[K]TZKer[K]η ≤ 0

and we get 1). �
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E.18 Projection Lemma

The projection lemma is used to remove a decision matrix and gives a necessary and sufficient
condition to the existence of such a matrix. Generally, the controller matrix is removed to
obtain LMIs instead of a BMI (see for instance Apkarian and Gahinet [1995], Scherer [1999]).

Lemma E.24 Let Ψ ∈ Sn and P,Q matrices of appropriate dimensions, then the following
statements are equivalent:

1. There exists an unconstrained matrix Ω such that

Ψ + P TΩQ+QTΩTP ≺ 0

2. The two following underlying LMIs hold

P T⊥ΨP ≺ 0
QT⊥ΨQ ≺ 0

3. There exists two scalars τ ∈ R such that

Ψ− τP TP ≺ 0
Ψ− τQTQ ≺ 0

The proof can be found in Gahinet and Apkarian. The assumption that Ω is unconstrained
plays a central role in the proof and in the equivalence between the two statements. This
means that when dealing with constrained controllers such as 0 blocks or bounded coefficients,
equivalence is lost and statement 2 may admit a solution while statement 1 does not (but
this is not always the case). For instance, in some papers, the authors remove uncertain or
symmetric terms invoking the projection lemma, but this is wrong since, for the first case,
the projection lemma provides an existence condition of the removed matrix and we do not
care of finding a uncertainty for which the condition is satisfied. . . we want to ensure that the
LMI is satisfied for all uncertain terms belonging in a known defined set; for the second case,
the matrix is symmetric and hence constrained which does not fall into the projection lemma
conditions of application.

E.19 Completion Lemma

This theorem shows that it is possible to construct a matrix and its inverse from only block
of each only. It has consequence in the construction of Lyapunov matrices in the dynamic
output feedback synthesis problem (see Packard et al. [1991]).

Theorem E.25 Let X ∈ Sn++ and Y ∈ Sn++. There exist X2 ∈ Rn×r, X3 ∈ Rr×r, Y2 ∈ Rn×r
and Y3 ∈ Rr×r such that

[
X X2

XT
2 X3

]
� 0 and

[
X X2

XT
2 X3

]−1

=
[
Y Y2

Y T
2 Y3

]

if and only if [
X In
In Y

]
� 0 and rank

[
X In
In Y

]
≤ n+ r (E.130)
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E.20 Application of the Projection Lemma

This appendix shows an application of the Projection Lemma in the context of the synthesis
of a parameter dependent dynamic output feedback. The synthesis is performed using the
scaled-small gain theorem.

Let us consider the following LPV system in ’LFT’ form

ẋ = Ax(t) +B0w(t) +B1u(t)
z(t) = C0x(t) +D00w(t) +D01u(t)
y(t) = C1x(t) +D10w(t)

(E.131)

where x, u, w, z and y are respectively the system state, the control input, the parameters
input, the parameters output and the measured output.

We seek a controller of the form:

ẋc(t)
zc(t)
u(t)


 = Ω



xc(t)
wc(t)
y(t)


 (E.132)

where xc, wc and zc are respectively the controller state, the parameter input and the param-
eter output.

The parameters input and output are defined by
[
w(t)
wc(t)

]
= diag(Θ(ρ),Θ(ρ))

[
z(t)
zc(t)

]

From this description, the system is scheduled by the parameters through the signals w
and z while the controller is scheduled through the signals wc and zc. We introduce the
scaling L is defined such that

Ldiag(Θ(ρ),Θ(ρ)) = diag(Θ(ρ),Θ(ρ))L

It is possible to rewrite the system as



ẋ
ẋc
z
zc
xc
wc
y




=




A 0 B0 0 0 0 B1

0 0 0 0 I 0 0
C0 0 D00 0 0 0 D01

0 0 0 0 0 I 0
0 I 0 0 0 0 0
0 0 0 I 0 0 0
C1 0 D10 0 0 0 0







x
xc
w
wc
ẋc
zc
u




(E.133)

The closed-loop system is given by
[

˙̄x(t)
z̄(t)

]
=
[

Ā+ B̄1ΩC̄1 B̄0 + B̄1ΩD̄10

C̄0 + D̄01ΩC̄1 D̄00 + D̄01ΩD̄10

]
(E.134)

where

Ā =
[
A 0
0 0

]
B̄0 =

[
B0 0
0 0

]
B̄1 =

[
0 0 B1

I 0 0

]

C̄0 =
[
C0 0
0 0

]
D̄00 =

[
D00 0

0 0

]
D̄01 =

[
0 0 D01

0 I 0

]

C̄1 =




0 I
0 0
C1 0


 D̄10 =




0 0
0 I
D10 0




(E.135)
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The stability of the closed-loop system is ensured, in virtue of the scaled-small gain theo-
rem if the following nonlinear matrix inequality is satisfied




(Ā+ B̄1ΩC̄1)TP + P (Ā+ B̄1ΩC̄1) P (B̄0 + B̄1ΩD̄10) (C̄0 + D̄01ΩC̄1)T

? −L (D̄00 + D̄01ΩD̄10)T

? ? −L−1


 ≺ 0

(E.136)
which can be rewritten into



ĀTP + PĀ PB̄0 C̄T0

? −L D̄T
00

? ? −L−1


+



PB̄1

0
D̄01


Ω

[
C̄1 D̄00 0

]
+ (?)T ≺ 0 (E.137)

Let

P =
[
P11 P12

? P22

]
X = P−1 =

[
X11 X12

? X22

]

L =
[
L11 L12

? L22

]
J = L−1 =

[
J11 J12

? J22

]

A basis of the null space of
[
C̄1 D̄10 0

]
is given by

Ker




0 I 0 0 0 0
0 0 0 I 0 0
C1 0 D10 0 0 0


 =




N1 0 0
0 0 0
N2 0 0
0 0 0
0 I 0
0 0 I




with C1N1 +D10N2 = 0 and a basis of the null space of



PB̄1

0
D̄01



T

is given by

Ker




P

[
0
I

] [
0
0

]
P

[
B1

0

]

0 0 0
0 0 0
0 0 D01

0 I 0




T

= diag(X, I, I)




M1 0 0
0 0 0
0 I 0
0 0 I

M2 0 0
0 0 0




where BT
1 M1+DT

01M2 = 0. Hence, in virtue of the projection lemma we get the two underlying
matrix inequalities:
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


N1 0 0
0 0 0
N2 0 0
0 0 0
0 I 0
0 0 I




T



ĀTP + PĀ PB̄0 C̄T0

? −L D̄T
00

? ? −L−1







N1 0 0
0 0 0
N2 0 0
0 0 0
0 I 0
0 0 I



≺ 0




M1 0 0
0 0 0
0 I 0
0 0 I

M2 0 0
0 0 0




T



XĀT + ĀX B̄0 XC̄T0

? −L D̄T
00

? ? −L−1







M1 0 0
0 0 0
0 I 0
0 0 I

M2 0 0
0 0 0



≺ 0

(E.138)

Removing lines and columns corresponding to zero lines and columns to null-spaces leads
to




N1 0 0
N2 0 0
0 I 0
0 0 I




T 


ATP11 + P11A PB̄0 C̄T0 0
? −L11 DT

00 0
? ? −J11 −J12

? ? ? −J22







N1 0 0
N2 0 0
0 I 0
0 0 I


 ≺ 0




M1 0 0
0 I 0
0 0 I

M2 0 0




T 


X11A
T +X11A B̄0 0 X11C̄

T
0

? −L11 −L12 D̄T
00

? ? −L22 0
? ? ? −J11







M1 0 0
0 I 0
0 0 I

M2 0 0


 ≺ 0

(E.139)
Reorganize columns and rows yields




N1 0 0
N2 0 0
0 I 0
0 0 I




T 


ATP11 + P11A PB̄0 C̄T0 0
? −L11 DT

00 0
? ? −J11 −J12

? ? ? −J22







N1 0 0
N2 0 0
0 I 0
0 0 I


 ≺ 0




M1 0 0
M2 0 0
0 I 0
0 0 I




T 


X11A
T +X11A X11C̄

T
0 B̄0 0

? −J11 D00 0
? ? −L11 −L12

? ? ? −L22







M1 0 0
M2 0 0
0 I 0
0 0 I



≺ 0

(E.140)
Finally applying Schur’s complement (see Appendix E.15), we get

[
N1

N2

]T ([
ATP11 + P11A PB̄0

? −L11

]
+
[
C̄T0 0
DT

00 0

] [
L11 L12

? L22

]
(?)T

)[
N1

N2

]
≺ 0

[
M1

M2

]T ([
X11A

T +X11A X11C̄
T
0

? −J11

]
+
[
B̄0 0
D00 0

] [
J11 J12

? J22

]
(?)T

)[
M1

M2

]
≺ 0

(E.141)
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and equivalently
[
N1

N2

]T ([
ATP11 + P11A PB̄0

? −L11

]
+
[
C̄T0
DT

00

]
L11

[
C̄T0
DT

00

]T)[
N1

N2

]
≺ 0

[
M1

M2

]T ([
X11A

T +X11A X11C̄
T
0

? −J11

]
+
[
B̄0

D00

]
J11

[
B̄0

D00

]T)[
M1

M2

]
≺ 0

(E.142)

The above matrix inequalities are LMIs. Indeed, by considering only one block of each
matrix and their inverse, the condition is LMI. Moreover, the whole matrices P,X,L, J can
be constructed uniquely from these blocks using singular value decomposition (see Appendix
A.6) and completion lemma (see Appendix E.19) as shown below.

First of all, it is possible to construct P12 and X12 from P11 and X11 using the singular
value decomposition. Indeed, we have

P11X11 + P12X
T
12 = I

and perform a singular value decomposition on I −P11X11 = UTΣV , by identification we get

P12 = UTΣ1/2 and X12 = V TΣ1/2

Finally, P is the solution of the algebraic equation

P

[
X11 I
XT

12 0

]
=
[
I P11

0 P T12

]

In an identical way, the other matrices can be computed.

E.21 Matrix Elimination Results

There exist a lot of result allowing to reduce the number of variables into a LMI, the projection
lemma (see Appendix E.18 is one of them. Some additional results are provided here.

Lemma E.26 There exists a matrix X such that


P Q X
QT R V
XT V T S


 � 0 (E.143)

if and only if [
P Q
QT R

]
� 0

[
R V
V T S

]
� 0 (E.144)

Proof : The proof is a straightforward application of the projection lemma (Appendix E.18.
�

Lemma E.27 There exists a matrix X such that


P Q+XE X
(Q+XE)T R V

X V T S


 � 0 (E.145)

if and only if
[
P Q
QT R− V E − ETV T + ETSE

]
� 0

[
R V
V T S

]
� 0 (E.146)



290 CHAPTER 6. APPENDIX

Proof : The proof is also an application of the projection lemma (Appendix E.18). �

Lemma E.28 There exists a symmetric matrix X such that
[
P1 − LXLT Q1

QT1 R1

]
� 0

[
P1 +X Q2

QT2 R2

]
� 0 (E.147)

if and only if 

P1 + LP2L

T Q1 LQ2

QT1 R1 0
QT2 L

T 0 R2


 � 0 (E.148)

Proof : The proof is again an application of the projection lemma (Appendix E.18). �

E.22 Parseval’s Theorem

The Parseval’s theorem allows to bridge the energy of a signal in the time-domain to an
expression into the frequency domain. This equality is heavily used in IQC analysis [Rantzer
and Megretski, 1997] where it is used to connect time-domain properties and frequency domain
properties of signals.

Theorem E.29 Let x(t) be a L2 signal and define its Fourier transform as X(ω) where
ω = 2πf and f is the frequency then the following equality holds

∫ +∞

−∞
|x(t)|2dt =

1
2π

∫ +∞

−∞
|X(ω)|2dω (E.149)

Proof :
∫ +∞

−∞
|x(t)|2dt =

∫ +∞

−∞
x(t)∗x(t)dt

=
∫ +∞

−∞

[(
1

2π

∫ +∞

−∞
X(ω′)∗e−jω

′tdω′
)(

1
2π

∫ +∞

−∞
X(ω)ejωtdω

)]
dt

=
1

2π

∫ +∞

−∞

[
X(ω′)

1
2π

∫ +∞

−∞

(
X(ω)

(∫ +∞

−∞
ej(ω−ω

′)dt

))
dω

]
dω′

(E.150)

Note that
∫ +∞

−∞
ej(ω−ω

′)dt = 2πδ(ω − ω′) by the definition of the Dirac pulse δ and the

Fourier transform. This leads to

∫ +∞

−∞
|x(t)|2dt =

1
2π

∫ +∞

−∞

[
X(ω′)

1
2π

∫ +∞

−∞

(
X(ω) · 2πδ(ω − ω′)

)
dω

]
dω′

=
1

2π

∫ +∞

−∞

[
X(ω′)

∫ +∞

−∞

(
X(ω)δ(ω − ω′)

)
dω

]
dω′

=
1

2π

∫ +∞

−∞
X(ω)∗X(ω)dω

=
1

2π

∫ +∞

−∞
|X(ω)|2dω

(E.151)
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�
We have the following corollary where a symmetric matrix is inserted in the energy ex-

pression:

Theorem E.30 Let x(t) be a L2 signal and define its Fourier transform as X(ω) where
ω = 2πf and f is the frequency then the following equality holds

∫ +∞

−∞
x(t)∗Mx(t)dt =

1
2π

∫ +∞

−∞
X(ω)∗M̂X(ω)dω (E.152)

Proof : The proof follows the same lines as for the standard version of the Parseval’s
theorem. �

It is possible to consider a more complete form for the Parseval’s theorem which consider
a frequency weighting through the use of the frequency dependent matrix M̂(jω):

Theorem E.31 Let x(t) be a L2 signal and define its Fourier transform as X(ω) where
ω = 2πf and f is the frequency then the following equality holds

∫ +∞

−∞
σ(xf (t), x(t))∗dt =

1
2π

∫ +∞

−∞
X(ω)∗M̂(jω)X(ω)dω (E.153)

where σ(x(t), xf (t)) is a quadratic form and ẋf (t) = Afxf (t) +Bfx(t).

F Technical Results in Time-Delay Systems

In this Appendix, we will give the reader further results used in the time-delay stability
analysis framework.

We will consider, in the following, the time-delay system

ẋ(t) = Ax(t) +Ah(x(t− h(t))) + Ew(t)
z(t) = Cx(t) + Chx(t− h(t)) + Fw(t)

(F.154)

F.1 Jensen’s Inequality

This inequality comes from statistics and probability but is very useful in robust and time-
delay system stability analysis (see Gu et al. [2003]).

Definition F.1 Let φ be a convex function and f(x) is integrable over [a(t), b(t)], a(t) < b(t)
for some parameter t ∈ U . Then the following inequality holds

φ

(∫ b(t)

a(t)
f(x)dx

)
≤ |b(t)− a(t)|

∫ b(t)

a(t)
φ(f(x))dx (F.155)

The Jensen’s inequality is often used in the H∞ norm analytical computation of integral
operators in time-delay systems framework. It is also used in approaches based on Lyapunov-
Krasovskii functionals as a efficient bounding technique. A example of application is given
below:
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(∫ t

t−h
ẋ(θ)dθ

)T
P

(∫ t

t−h
ẋ(θ)dθ

)
≤ h

∫ t

t−h
ẋ(θ)TPẋ(θ)dθ (F.156)

with P = P T � 0. The convex function is φ(z) = zTPz since P = P T � 0, f(t) = ẋ(t) and
b(t)− a(t) = h.

F.2 Bounding of cross-terms

The use of model-transformations for stability analysis and control synthesis of time-delay sys-
tems may lead to annoying terms named ’cross terms’, generally involving products between
signals and integrals. A common cross-term is

− 2x(t)TATPAh

∫ t

t−h
ẋ(s)ds (F.157)

and appears, for instance, while using the Euler model-transformation with a quadratic
Lyapunov-Razumikhin function of the form V (x(t)) = x(t)TPx(t).

Proposition F.2 For any Z = ZT � 0 we have

±2x(t)TATPAh

∫ t

t−h
ẋ(s)ds ≤ x(t)TATZAx(t) +

(∫ t

t−h
ẋ(s)ds

)T
AThPZ

−1PAh

(∫ t

t−h
ẋ(s)ds

)

≤ x(t)TATZAx(t) + h

∫ t

t−h
ẋ(s)TAThPZ

−1PAhẋ(s)ds

≤ hx(t)TATZAx(t) +
∫ t

t−h
ẋ(s)TAThPZ

−1PAhẋ(s)ds

(F.158)

Proof : The idea is to use completion of the squares, the first line is obtained by writing

[
Z−1/2Ax(t)

±Z−1/2Ah
∫ t
t−h ẋ(s)ds

]T [
Z−1/2Ax(t)

±Z−1/2Ah
∫ t
t−h ẋ(s)ds

]
≥ 0

for some Z = ZT � 0. Expand the latter expression leads to first inequality. Then apply
Jensen’s inequality onto the quadratic integral term leads to second inequality. Finally, the
last inequality is obtained by completion of the squares too but in another fashion:

∫ t

t−h

[
Z−1/2Ax(t)

±Z−1/2Ahẋ(s)ds

]T [
Z−1/2Ax(t)
±Z−1/2Ahẋ(s)

]
≥ 0

Expanding the latter quadratic form leads to the last inequality. � The latter bounding tech-

nique is relatively inaccurate since the cross terms may admits negative values even though
the right-hand side term is always positive. This drove Park to introduce a new bound (in
Park [1999], Park et al. [1998] and is generally referred to as Park’s bound). The idea is to
use a more complete completion by the squares and is given below in his own terminology:
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Lemma F.3 Assume that a(α) ∈ Rnx and b(α) ∈ Rny are given for α ∈ Ω. Then, for any
positive definite matrix X ∈ Rnx×nx and any matrix M ∈ Rny×ny , the following holds

− 2
∫

Ω
b(α)Ta(α)dα ≤

∫

Ω

[
a(α)
b(α)

]T [
X XM

MTX (MTX + I)X−1(XM + I)

] [
a(α)
b(α)

]

(F.159)

This model transformation has led to an great improvement of results in this time (see
comparison with contemporary results in Park [1999], Park et al. [1998]). The obtained result
is presented in Section 2.2.1.9.

Inspired from the latter bound, another one has been employed in Moon et al. [2001] and
is sometimes referred as Moon’s inequality.

Lemma F.4 Assume that a(·) ∈ Rna, b(·) ∈ Rnb and N (·) ∈ Rna×na are defined on the
interval Ω. Then, for any matrices X ∈ Rna×na, Y ∈ Rna×nb and Z ∈ Rnb×nb, the following
holds

− 2
∫

Ω
a(α)TN b(α)dα ≤

∫

Ω

[
a(α)
b(α)

]T [
X Y −N
? Z

] [
a(α)
b(α)

]
(F.160)

where [
X Y
? Z

]
≥ 0

Proof : See Moon et al. [2001]. �
Although this result is less accurate than the Park’s bound, its more simple form allows

for easy design techniques than by using Park’s inequality.

F.3 Power Series

We will introduce here the notion of power series (or entire series) which will be necessary to
define the Padé approximation of a continuous function.

A power series (in one variable) is an infinite series of the form

f(x) =
+∞∑

n=0

an(x− c)n

where an represents the coefficient of the nth, c is a constant and x varies around c.
Since, the series may converge for some value of x and diverge for others, it is intrusting to

determine its domain of convergence. From the expression above, it is clear that it converges
for x = c and hence we are then interested in finding a radius defining a ball centered at c in
which the series converges. The radius r ∈ [0,+∞] is then sdetermined by the relation

r−1 := lim
n→+∞

∣∣∣∣
an+1

an

∣∣∣∣

if this limit exists. And in this case the series converges absolutely for |x−c| < r and converges
uniformly on every compact subset of {x : |x− c| < r}.

One of the most interesting property of power series is to approximate functions, at least
in a compact domain. This is actually a generalization of Taylor series. In order to determine
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a power series approximating a function, say g(x), it is interesting to define this function as
a solution of a differential equation. As an example, let us consider g(x) = ex and thus we
have the following differential equation

g′(x)− g(x) = 0 (F.161)

Now defining h(x) =
+∞∑

n=0

anx
n and substituting into the differential equation leads

h′(x)− h(x) = 0

=
+∞∑

i=0

nanx
n−1 −

+∞∑

i=0

anx
n

=
+∞∑

i=0

[(n+ 1)an+1 − an]xn

Since the value of the series is identically zero then we must have

(n+ 1)an+1 − an = 0

for all n ∈ N. Moreover, the power series converges for x = 0 and its value is a0. Since

h(0) = g(0) = 1 then we have a0 = 1. Finally we find an+1 =
1

n+ 1
an and therefore

an =
1
n!

The radius of convergence is then given by

r−1 = lim
n→+∞

∣∣∣∣
an+1

an

∣∣∣∣

= lim
n→+∞

∣∣∣∣
1

n+ 1

∣∣∣∣
= 0

This means that r = +∞ and hence the power series converges for all x ∈ R. This means
that

ex =
+∞∑

n=0

1
n!
xn

for all x ∈ R. The equality also holds when x is a complex number.
For series in which negative and fractional powers (e.g. x−n and x1/2) are allowed see

respectively Laurent series and Puiseux expansion.

F.4 Padé Approximants

This appendix introduced the Padé approximation of a continuous function. This approxi-
mation is of great interest in the framework of time-delay systems [Zhang et al., 1999].
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System (F.154) with constant time-delay h can be rewritten as an interconnection of two
subsystems:

ẋ = Ax+Ahw0 + Ew
z0 = x
z = Cx+ Chw0 + Fw
w0 = e−shz0

(F.162)

In order to analyze stability of the interconnection it may be interesting to approximate the
operator e−sh by a proper (stable) transfer function. A power series cannot be used since the
transfer function would be not proper. The Padé approximants play here an important role
by approximating a function by a rational function with arbitrary degree for the denominator
and numerator.

Let us consider a function f(x) which is sought to be approximated by a rational function
Rm,n(x) defined as

Rm,n(x) :=
Pm(x)
Qn(x)

=
∑m

i=0 aix
i

∑n
i=0 bix

i
(F.163)

where polynomials Pm(x) and Qn(x) are of degree m and n respectively. These polynomials
can be found using a relation linking the truncated power series of f(x) and polynomials
Pm(x) and Qn(x). The truncated power series Zm(x) of f(x) of degree m is given by

Zm(x) :=
m∑

i=0

cix
i (F.164)

In this case we look for ai and bi such that

m∑

i=0

cix
i =

Pm(x)
Qn(x)

(F.165)

or equivalently

Qn(x)
m∑

i=0

cix
i = Pm(x) (F.166)

This results into an homogenous system of n+m+ 1 equations with n+m+ 2 unknowns and
so admits infinitely many solutions. However, it can be shown that the generated rational
functions Rm,n(x) are all the same (the obtained polynomials are not prime at a constant
factor). Table 6.2 summarizes few of Padé approximants for the exponential function ez with
complex argument z:
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HHHHHHm
n

1 2 3

0
1

1− z
1

1− z +
1
2
z2

1

1− z +
1
2
z2 − 1

6
z3

1
1 +

1
2
z

1− 1
2
z2

1 +
1
3
z

1− 2
3
z +

1
6
z2

1 +
1
4
z

1− 3
4
z +

1
4
z2 − 1

24
z3

2
1 +

2
3
z +

1
6
z3

1− 1
3
z

1 +
1
2
z +

1
12
z2

1− 1
2
z +

1
12
z2

1 +
2
5
z +

1
20
z2

1− 3
5
z +

3
20
z2 − 1

60
z3

3
1 +

3
4
z +

1
4
z2 +

1
24
z3

1− 1
4
z

1 +
3
5
z +

3
20
z2 +

1
60
z3

1− 2
5
z +

1
20
z2

1 +
1
2
z +

1
10
z2 +

1
120

z3

1− 1
2
z +

1
10
z2 − 1

120
z3

Table 6.2: First Padé’s approximants of the function es

The column n = 0 has been omitted since it coincides with the truncation of power series.
A particularity of Padé approximants of the exponential is the regularity of the numerator

and the denominator when m = n. Indeed, denote Nm(z) the numerator of Rm,m(z) and then
we have

Rm(z) := Rm,m(z) =
Nm(z)
Nm(−z) (F.167)

It is proved in [Zhang et al., 1999] that the proper transfer function is asymptotically
stable, that is the polynomial Nm(−z) has all its roots in the complex left-half plane.

F.5 Maximum Modulus Principle

The maximum modulus principle is a interesting result very useful in complex analysis which
is necessary to study the bounded of some function norms.

Theorem F.5 Let f be a holomorphic function on come connected open subset D ⊂ C and
taking complex values. If z0 is a point such that

f(z0) ≥ f(z) (F.168)

for all z in any neighborhood of z0, then the function f is constant on D.

This can viewed otherwise, if f is a holomorphic function f over a connected open subset
D, then its modulus cannot |f | exhibit a true local maximum on D. Hence the maximum
modulus is attained on the boundary of ∂D. This has strong consequences in system theory,
as illustrated in the following example:
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Example F.6 This example shows how the maximum modulus principle can be used in order
to prove the stability of a system. Let us consider for simplicity a SISO system H(s) =
N(s)/D(s) where N(s) and D(s) are arbitrary. The system is proper if the degree of N(s)
is lower than the degree of D(s) and it is asymptotically stable if all the zeros of D(s) have
negative real part (H(s) has all its poles with negative real part). Hence this means that the
norm of H(s) denoted by ||H(s)|| is bounded for all C+. By the maximum modulus principle
the maximum cannot be reached in the interior of C+ hence it suffices to consider the boundary
∂C+ only to check the boundedness of ||H(s)|| over C+ only. Noting that ∂C+ = C0 ∪ +∞
(the boundary of C+ is constituted of the imaginary axis C0 and a point at infinity) then this
means that if ||H(s)|| is bounded over ∂C+ we have

• ||H(jω)|| < +∞ for all ω ∈ R and hence H(s) has no poles on the imaginary axis.

• ||H(+∞|| < +∞ then the transfer function H(s) is proper.

This implies that the stability of a system can be checked only by verifying the boundedness
of the transfer function over the boundary of C+. This can be easily generalized to MIMO
systems by considering the maximum singular value as the norm. This is the definition of the
H∞-norm and this justifies that the following equality for a strictly proper MIMO transfer
function:

sup
s∈C+

¯σH(s)| = sup
ω∈R

¯σH(jω) (F.169)

For more information about the maximum modulus principle please refer to [Levinson
and Redheffer, 1970].

F.6 Argument principle

The winding number of a closed-curve C in the plane around a given point z0 is number
representing the total number of times that curve travels counterclockwise around the point
z0. The winding number depends on the orientation of the curve, and is negative if the curve
travels around the point clockwise. This notion has given rise to the celebrated Nyquist
criterion and is also a first towards the elaboration of the Rouché’s theorem presented in
Appendix F.7.

Figure 6.3: This curve has winding number two around the point p
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This has important results in many applications and notably in the Nyquist criterion:

Theorem F.7 A closed-loop continuous time system is asymptotically stable if and only if
the open-loop transfer function Hol(s) travels N times around the critical point −1 counter-
clockwise when s sweeps the imaginary axis and where N is the number of unstable poles of
Hol(s).

More generally we have the following theorem which is also called the argument principle:

Theorem F.8 Let f(z) be a function and C be a closed contour on C such that no poles and
zeros are on C and C may contain any poles and zeros (f(z) is meromorphic inside C), then
the following formula holds: ∮

C

f ′(z)
f(z)

dz = 2πj(N − P ) (F.170)

denote respectively the number of zeros and poles of f(z) inside the contour C, with each zero
and pole counted as many times as its multiplicity and order respectively.

More generally, suppose that C is a curve, oriented counter-clockwise, which is contractible
to a point inside an open set D in the complex plane. For each point z ∈ D, let n(C, z) be
the winding number of C around the point z. Then

∮

C

f ′(z)
f(z)

dz = 2πj

(∑

a

n(C, a)−
∑

b

c(C, b)

)
(F.171)

where the first summation is over all zeros a of f counted with their multiplicities, and the
second summation is over the poles b of f.

Figure 6.4: Illustration of the meaning of the Rouché’s theorem

This makes a relation between the maximal principle and the winding number of a func-
tion of a complex variable. For more information about this please refer to [Levinson and
Redheffer, 1970].
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F.7 Proof of Rouché’s theorem

This theorem is important in complex analysis and has important consequence in the stability
analysis of time-delay systems. It can be used in order to get information on the number of
zeroes of a function over a compact set without computing them but only by knowing the
number of zeroes of another given function.

The theorem is recalled below for readability:

Theorem F.9 Given two functions f and g analytic (holomorphic) inside inside and on a
contour C. If |g(z)| < |f(z)| for all z on C, then f and f + g have the same number of roots
inside C.

Let us define the function h such that h = f + g. It is holomorphic since it is the sum of
two holomorphic functions. From the argument principle (see appendix F.6), we have

Nh − Ph = Ih(C, 0) =
1

2πj

∮

C

h′(z)
h(z)

dz (F.172)

where Nh is the number of zeroes of h inside C, Ph is the number of poles, and Ih(C, 0) is the
winding number of h(C) about 0. Since h is analytic inside and on C, it follows that Ph = 0
and then

Nh = Ih(C, 0) =
1

2πj

∮

C

h′(z)
h(z)

dz (F.173)

One has that
h′

h
= D[log(h(z))], where D denotes the complex derivative. Keeping in mind

that h = f + g, we find

Nh =
1

2πj

∮

C

h′(z)
h(z)

=
1

2πj

∮

C
D[log(h(z))]dz

=
1

2πj

∮

C
D[log(f(z) + g(z))]

=
1

2πj

∮

C
D
[
log
(
f(z)

(
1 +

g(z)
f(z)

))]
dz

=
1

2πj

∮

C

f ′(z)
f(z)

+
1

2πj

∮

C

D(1 + g(z)/f(z))
1 + g(z)/f(z)

dz

= If (C, 0) + I1+g(z)/f(z)(C, 0)

The winding number of 1 + g/f over C is zero. This is because we supposed that |g(z)| <
|f(z)|, so g/f is constrained to a circle of radius 1, and adding 1 to g/f shifts it away from
zero, and thus 1 + g/f is constrained to a circle of radius 1 about 1, and C under 1 + g/f
cannot wind around 0. Finally we get

Nh = If (C, 0)

which equals to Nf or the number of zeros of f . This concludes the proof.�
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Example F.10 An example of application is the determination of the number of roots of a
3th order polynomial, say z3 + z2− 1, contained in the disk |z| < 2. The idea is to remove the
higher order term to use it as a bound on the rest of the polynomial. Indeed, define f(z) = z3

and g(z) = z2 − 1, the contour is defined by |z| = 2. Hence for all z on this contour we have
|g(z)| ≤ 5 and |f(z)| = 8 showing that we have |g(z)| < |f(z)| for any z such that |z| = 2.
This shows that z3 and z3 + z2 − 1 have the same in the disc |z| < 2, which is 3.

For more information about the Rouché’s theorem, please refer to [Levinson and Redheffer,
1970].

G Frequency-Domain Stability Analysis of Time-Delay
Systems

The frequency domain analysis is chronologically the first to have been deployed but is limited
to the analysis of constant delays Gu et al. [2003], Niculescu [2001]. On the other hand, it
is possible to turn a system with time-varying delay into an uncertain system with constant
delay in order to apply robust stability analysis tools and frequency domain methods. This
is not detailed here but the readers should refer, for instance, to Gu et al. [2003], Michiels
and Niculescu [2007], Michiels et al. [2005] and references therein. This part does not aim at
providing a complete overview of frequency domain methods but some facts on well-known
and simple methods only.

G.1 Zeros of quasipolynomials

The essence of frequency domain analysis is to find where the poles of the studied system
are located in the complex plane. For a finite dimensional system, it is a well-known fact
that if at least one of the poles has nonnegative real part, the system is not asymptotically
stable (or unstable). Fortunately, the same fact holds for linear time-delay systems [K.Hale
and Lunel, 1991] and thus frequency domain methods can be exploited for stability analysis.
At the difference of finite dimensional systems, the number of poles of a time-delay systems
may be different from n and may take a finite number as well as an infinite (but countable)
number of characteristic roots. To see this, let us consider the time-delay system

ẋ(t) = Ax(t) +Ahx(t− h) + Ew(t) (G.174)

where x, w and h are respectively the system state, the inputs and the delay. The Laplace
transform of such a system yields:

sX(s) = AX(s) +AhX(s)e−sh + EW (s)

and finally
(sI −A−Ahe−sh)X(s) = EW (s) (G.175)

Hence the system is asymptotically stable if the characteristic quasipolynomial in s ∈ C

det(sI −A−Ahe−sh) (G.176)

has all its zeroes in the open left half plane. The name ’quasipolynomial’ comes from the
mixing of powers and exponential terms making the search for zeroes of (G.176) a rather
difficult task since it is not a polynomial.
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Figure 6.5: Zeros of linearized system (G.178)

Example G.1 Let us consider the following model of two coupled neurons with time-delayed
connections [Engelborghs et al., 2001]

ẋ1(t) = −κx1(t) + β tanh(x1(t− τs)) + δ tanh(x2(t− τ2))
ẋ2(t) = −κx2(t) + β tanh(x2(t− τs)) + γ tanh(x1(t− τ1))

(G.177)

where κ = 0.5, β = −1, δ = 1, γ = 2.34, τ1 = τ2 = 0.2 and τs = 1.5. The linearized equations
around equilibrium (0, 0) are given by

ẋ(t) =
[
−κ 0
−κ 0

]
x(t)+

[
β 0
0 β

]
x(t− τs)+

[
0 0
γ 0

]
x(t− τ1)+

[
0 δ
0 0

]
x(t− τ2) (G.178)

The zeroes of the characteristic equation corresponding to linear system (G.178) are computed.
Their distribution over the complex plane is depicted on Figure 6.5. Since there is one real
zero with positive real part, (0, 0) is an unstable equilibrium.

We summarize here few results on the location of zeros of quasipolynomial, which are
mostly borrowed from Gu et al. [2003], Michiels and Niculescu [2007].

Let us consider a general quasipolynomial of the form

f(s) :=
n∑

k=0

m∑

i=0

(aki + jbki)sn−ke(αi+jβi)s

=
m∑

i=0

pi(s)e(αi+jβi)s

=
n∑

k=0

ψk(s)sn−k

(G.179)

where aki, bki, αi and βi are real numbers and

pi(s) =
∑n

k=0(aki + jbki)sn−k, i = 0, 1, . . . ,m,
ψk(s) =

∑n
i=0(aki + jbki)e(αi+jβi)s, k = 0, 1, . . . , n.

Under assumptions



302 CHAPTER 6. APPENDIX

Figure 6.6: Potential diagram

• exponential coefficients αi + jβi, i = 0, 1, . . . ,m are distinct complex numbers;

• polynomials pi(s), i = 0, 1, . . . ,m are not trivial

it is possible to show that f(s) may have a finite number of zeros only in the case m = 0
(i.e. system with one delay). In the following we will assume that m > 0. The following
proposition has been shown in [Gu et al., 2003]:

Proposition G.2 If at least two of the exponential coefficients αi+jβi, i = 0, 1, . . . ,m, have
distinct imaginary parts, then f(s) has zeros with arbitrarily large positive real parts.

This means that a stable quasipolynomial has only real exponent coefficients and then
f(s) must reduce to

fs(s) =
n∑

k=0

m∑

i=0

(aki + jbki)sn−keαis (G.180)

with α0 < α1 < . . . < αn. The quasipolynomial fs(s) can also be written as

fs(s) =
n∑

l=0

cls
kleγls

where all complex coefficients cl are supposed to be nonzero, and additionally we assume that
no couple (kl, γl) are identical (i.e. (kl, γl) 6= (kq, γq) for all l, q = 1, . . . , N , l 6= q).

Now we will briefly explain how the potential diagram may give a result on the locations of
the zeros of quasipolynomial fs(s). Let us plot on the complex plane all points characterized
by zl = γl + jkl. Then construct the upper part of the envelope of these points as shown in
Figure 6.6.

The upper part is known as the potential diagram of fs(s) and it consists of a finite
number of segments. Let M be the number of these segments and we associate at each one,
a logarithmic curve

Λκ := {s = x+ jy : x = µκ ln(y), y ∈ (−1,+∞)} , κ = 1, 2, . . . ,M (G.181)
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Here µκ is a number such that the vector (µκ, 1) is along the direction of the outer normal
to the corresponding segment. If µκ > 0, then Λκ lies in the right-half complex plane,
while the curve corresponding to µκ belongs to the left-half complex plane. For µκ = 0, the
corresponding Λκ coincides with the imaginary axis.

For sufficiently small ε > 0 the logarithmic ε-sectors

Λκ(ε) := {s = x+ jy : x ∈ [(µκ − ε/2) ln(y), (µκ + ε/2) ln(y)], y ∈ (−1,+∞)} , κ = 1, 2, . . . ,M
(G.182)

have no common points except zc = j.
The following theorem describing distribution of zeros of quasipolynomial (G.180) can be

found with proof in [Gu et al., 2003].

Theorem G.3 For every ε > 0 there exists a constant R(ε) depending on ε, such that all
zeros of fs(s) in the upper half complex plane with magnitudes greater than R(ε) lie in the
union of logarithmic ε-sectors Λκ(ε), κ = 1, 2, . . . ,M .

The zeros of fs(s) belonging to the lower half plane lie into the union of logarithmic
ε-sectors obtained by the mirror image of Λκ, κ = 1, 2, . . . ,M , with respect to the real axis.

Remark G.4 Applying the principle of argument (see Appendix F.6) it may be shown that
f(s) has infinite (countable) number of zeros in every logarithmic ε-sector Λκ(ε).

It follows that fs(s) has zeros with arbitrarily large positive real parts when at least one of
the values µκ is positive. Using the exponential diagram of fs(s), one can conclude that such
positive µκ exists only if the outer normal of one of the segments forming the diagram points
toward the right-half complex plane. In order to guarantee the absence of zeros of fs(s) with
arbitrarily large positive real parts, one has to assume that one of the term in (G.180), say
c0s

k0eγ0s, satisfies the two conditions

• k0 ≥ kj , j = 1, 2, . . . , N ;

• γ0 ≥ γj , j = 1, 2, . . . , N

When such a term exist it is called principal term of quasipolynomial (G.180).
We end this section on the following corollary:

Corollary G.5 Quasipolynomial (G.180) may have all zeros in the open left half complex
plane if it has a principal term.

Some enlightenments have been provided on the location and the number of zeros of a
quasipolynomial of the form (G.180). Time-delay systems have all the properties to be stable
(i.e. presence of a principal term and argument of the exponentials purely imaginary).

Due to the infinite number of zeros of characteristic quasipolynomial of time-delay systems
and the high computational complexity of their computation, it seems more convenient to try
to determine the stability of a time-delay system without any explicit computation of zeros,
this is the goal of the recent work of Michiels and Niculescu [2007], Sipahi and Olgac [2006].
The next sections aim at providing simple stability tests.
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G.2 Classical simple stability test: 2-D stability test

We briefly explain here a simple stability test allowing to compute the delay margin of a system
with commensurate delays. Recall that, for systems involving several delays hi, i = 1, . . . , N ,
it is said to they are commensurate if there exists ki ∈ QN−1

+ such that hi+1 = kihi.
The approach is based on the stability of two-dimensional polynomials which are very

often encountered in signal and image processing [Bose, 1982]. The main idea, here, is to
turn the quasipolynomial of a linear time-delay system into a bivariate polynomial which
may analyzed as a characteristic polynomial of a 2-D system.

Let us consider a system with single delay having characteristic quasipolynomial a(s, z)
where z = e−sh and h is the delay. Introduce the following bilinear transformation

s =
1 + κ

1− κ
which maps s from the open right half plane C+ to κ in the open unit disc D. Construct the
2-D polynomial

b(κ, z) := (1− κ)na
(

1 + κ

1− κ, z
)

(G.183)

where a(s, z) = det(sI − A − Ahz) is the characteristic quasipolynomial of the system with
z = e−sh. It is evident that a(s, z) = 0 for some (s, z) ∈ ∂C+ × ∂D if and only if b(κ, z) = 0
for some (κ, z) ∈ ∂D× ∂D. In addition, for h > 0, the quasipolynomial a(s, e−sh) has no root
in C+ if and only if b(κ, z) is stable; here by stability we mean that all its roots lie outside
the closed region D̄× D̄. Hence, under the assumption that the system is stable at h = 0, to
verify the delay-independent stability of the system, it suffices to check the stability of the
2-D polynomial b(κ, z). On the other hand, the delay-dependent stability is determined by
computing the roots of b(κ, z). To do this, introduce the conjugate polynomial

ā(s, z) := zna(−s, z−1) (G.184)

By the conjugate symmetry of a(s, z), it follows that (s, z) ∈ ∂C+ × ∂D is a root of a(s, z) if
and only if it is also a root of ā(s, z). Thus in order to find the roots of a(s, z) on ∂C+ × ∂D,
it suffices to solve the system of polynomial equations:

a(s, z) = 0
ā(s, z) = 0

(G.185)

When no solution exists, and when the system is stable in the delay free case, then the
system is delay independent stable. Otherwise, when the system of equations does admit a
common solution, it is possible to eliminate one variable, resulting in a polynomial in one
variable. From the computation of the roots of this latter polynomial, it is possible to give
the delay margin of the system (see [Gu et al., 2003] for more details and examples).

Example G.6 Consider the time-delay system (2.14) with constant time-delay. In this case
we have

a(s, z) = s+ z = 0
ā(s, z) = za(−s, z−1) = −sz + 1 = 0

From the first equation we get z = −s and substituting the expression of z in the second
equality we get s2 + 1 = 0. The solutions of the latter equation are given by s = ±i and hence
the set of solutions (s, z) is given by

(s, z) ∈ {(i,−i), (−i, i)}
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Finally, since z = e−sh then we have

i = eih

−i = e−ih

Both identities lead to h = π/2 + 2kπ, k ∈ Z. The delay-margin is given by the smallest
positive value of h and is then h < π/2. The result of [Kharitonov and Niculescu, 2003] is
retrieved.

Other approaches are provided in Gu et al. [2003], Niculescu [2001] and references therein.The
main drawback of 2-D stability tests (and other simple tests provided in Gu et al. [2003]) comes
from the fact that important symbolic computation or calculation ’by hand’ are needed, which
is highly undesirable. Hence the application of these methods for high order systems and/or
with many delays becomes very difficult, making the tests inefficient and less applicable.

G.3 Frequency Sweeping Tests

Frequency sweeping tests are based on the analysis of the (generalized) eigenvalues of the
system when the Laplace variable s sweeps the imaginary axis. If at least one of the eigenvalues
crosses the imaginary axis, then this implies that the system will be unstable. According to
sweeping tests, the system would either delay-dependent or delay-independent stable. Both
simple tests are provided below.

A sufficient condition to delay-independent stability taken from [Gu et al., 2003] is given
below

Theorem G.7 System (G.174) is delay-independent stable of delay if

1. A is stable

2. A+Ah is stable

3. ρ̄[(jωI −A)−1Ah] < 1, for all ω > 0

where ρ̄(·) denotes the spectral radius (i.e. maxi |λi(·)|).

Statements 1 and 2 implies that the system is stable for h = +∞ and h = 0. The last
statement ensures that for any ω > 0 and h ∈ (0,+∞), the system admits no eigenvalues on
the imaginary axis. Therefore, the system is stable independent of the delay. System (2.10)
of Example 2.2.2 satisfies these conditions and thus is delay-independent stable.

It is also possible to provide a necessary and sufficient condition to delay-independent
stability [Gu et al., 2003]:

Lemma G.8 System (G.174) is delay-independent stable if and only if

1. A is Hurwitz

2. ρ̄(A−1Ah) < 1, or ρ̄(A−1Ah) = 1 with det(A+Ah) 6= 0

3. ρ̄(jωI −A)−1Ah < 1, for all ω > 0.

An extension of Theorem G.7 allows to compute the delay margin when the system is not
delay-independent stable, provided that it is stable for h = 0 [Gu et al., 2003].
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Theorem G.9 Suppose that system (G.174) is stable at h = 0. Let us define q := rank[Ah]
and

h̄i :=





min1≤k≤n θik/ω
i
k if λi(jωikI −A,Ah) = e−jθ

i
k

for some ωik ∈ (0,+∞), θik ∈ [0, 2π]
+∞ if ρ(jωI −A,Ah) > 1, for all ω ∈ (0,+∞)

(G.186)

and ρ(A,B) denote the minimal generalized eigenvalue of the pair (A,B) (i.e. ρ(A,B) =
min{|λ| : det(A − λB) = 0}). Then the system (G.174) is delay-dependent stable for every
delay h ∈ [0, h̄) where

h̄ := min
1≤i≤q

h̄i (G.187)

and becomes unstable at h = h̄.

These approaches can be extended to the case of multiple commensurate delays. In spite
of their implementational simplicity, frequency-sweeping tests, by nature, cannot be executed
in finite computation, and the computational accuracy hinges on the fineness of the frequency
grids. Thus they are likely to be a disadvantage if high computational precision is sought.

G.4 Constant Matrix Tests

Preceding discussions lead us to search for alternate stability tests, that are both readily
implementable and can be performed via finite step algorithms. In particular, for numerical
precision, it will be highly desirable to eliminate any frequency sweep, while retaining the
merits of computing eigenvalues and generalized eigenvalues, for the computational ease of
the latter. The stability tests to be introduced below combine these advantageous featuresand
only require the computation of constant matrices.

Let us consider the characteristic quasipolynomial

a(s, e−sh) =
q∑

k=0

ak(s)e−khs (G.188)

where

a0(s) = sn +
n−1∑

i=0

a0is
i ak(s) =

n−1∑

i=0

akis
i (G.189)

The following theorem [Gu et al., 2003] conclude on both delay-independent and delay-
dependent stability of quasipolynomial (G.188).

Theorem G.10 Suppose that the latter quasipolynomial is stable at h = 0. Let Hn := 0,
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Tn := I, and

Hi : =




aqi aq−1,i . . . a1i

0 aqi . . . a2i
...

. . . . . .
...

0 0 . . . aqi


 , i = 0, 1, . . . , n− 1

Ti :=




a0i 0 . . . 0
a1i a0i . . . 0
...

. . . . . .
...

aq−1,i aq−2,i . . . a0i


 , i = 0, 1, . . . , n− 1

Pi :=
[

jiTi jiHi

(−j)iHT
i (−j)iT Ti

]
, i = 0, 1, . . . , n

Furthermore, define

P :=




0 I . . . 0
...

...
. . .

...
0 0 . . . I

−P−1
n P0 P−1

n P1 . . . P−1
n Pn−1




Then, h̄ = +∞ if σ(P ) ∩ R+ = ∅ or σ(P ) ∩ R+ = {0}. Additionally, let

F (s) :=




0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−a0(s) −a1(s) . . . −aq−1(s)




G(s) := diag(1, 1, . . . , aq(s))

Then h̄ = +∞ if σ(F (jωk), G(jωk)) ∩ ∂D = ∅ for all 0 6= ωk ∈ σ(P ) ∩ R+. In these cases,
the quasipolynomial (G.188) is delay-independent stable. Otherwise,

h̄ = min
1≤k≤2nq

θk/ωk (G.190)

where 0 6= ωk ∈ σ(P )∩R+ and θk ∈ [0, 2π] satisfy the relation ejθk ∈ σ(F (jωk), G(jωk)). The
quasipolynomial (G.188) is stable for all h ∈ [0, h̄), but is unstable at h = h̄.

This theorem suggests that a two-step procedure can be employed to test the stability of
the quasipolynomial (G.188). First compute the eigenvalues of the 2nq× 2nq matrix P . If P
has no real eigenvalue or only one real eigenvalue at zero, we conclude that the quasipolynomial
is stable independent of delay. If it is not the case, compute next the generalized eigenvalues
of the q × q matrix pair (F (jωk), G(jωk)), with respect to each positive real eigenvalue ωk
of P . If for all such eigenvalues the pair (F (jωk), G(jωk)) has no generalized eigenvalue on
the unit circle, we again conclude that the quasipolynomial is stable independent of delay.
Otherwise, we obtain the delay margin h̄.
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H Stabilizability and Detectability of LPV Systems

This appendix is devoted to the analysis of stabilizability and detectability of LPV systems.
Some recent works have been devoted to this problems [Blanchini, 2000, Blanchini et al., 2007].
Since stabilizability and detectability of LPV systems is highly related to the notion of sta-
bility of LPV systems, different variations of notions can be provided [Hespanha et al., 2001,
Hespanha and Morse, 1999, Mohammadpour and Grigoriadis, 2007b, Willigenburg and Kon-
ing, To Appear]. This section is not devoted to the enumeration of these variations but rather
focuses on main ideas. As an example, one can define the robust and quadratic stabilizabil-
ity/detectability in which the rate of variation of parameters is taken into account or not. It
is also possible to define the almost everywhere quadratic/robust stabilizability/detectability.

In this section, LPV systems of the form (H.191) will be considered.

ẋ = A(ρ)x+B(ρ)u
y = C(ρ)x+D(ρ)u

(H.191)

where x ∈ Rn, u ∈ Rm, y ∈ Rp are respectively the state of the system, the control input
and the measured output. Moreover the parameters are assumed to take values in a compact
set denoted Uρ while their derivative evolve in the set Ud = hull[Uν ] where Uν is the set of
vertices of Ud.

Before providing a discussion on different types of properties of a LPV system, it is
important that these properties of controllability/stabilizability/observability/detectability
are not absolute at all. Indeed, by controllability, for instance, it is generally meant that a
state-feedback exists such that all the eigenvalues of the system controlled by a state-feedback
can be placed arbitrarily in the complex plane (and therefore in the complex left-half plane).
But there exist several controllability concepts depending on the type of controllers which is
considered. The same distinction holds for observers too.

As straightforward results, the extension of rank conditions for controllability/stabilizability
and observability/detectability are now provided (see Appendix B.6).

Lemma H.1 System (H.191) is robustly controllable by state-feedback control law u = K(ρ)x
if and only if the following rank condition

rank[C (ρ)] = n with C (ρ) =
[
B(ρ) A(ρ)B(ρ) . . . A(ρ)n−1B(ρ)

]
(H.192)

holds for all ρ ∈ Uρ.

Proof : This the generalization of the controllability rank criterion to LPV systems (see
Appendix B.6. �

Lemma H.2 System (H.191) is robustly stabilizable with a state-feedback control law u =
K(ρ)x if and only if the following rank condition

rank[S (s, ρ)] = n with S (s, ρ) =
[
sI −A(ρ) B(ρ)

]
(H.193)

holds for all ρ ∈ Uρ and s ∈ C+.

Proof : This the generalization of the stabilizability rank criterion to LPV systems (see
Appendix B.6. �
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Lemma H.3 System (H.191) without control input is robustly observable with observer ˙̂x =
A(ρ)x̂+ L(ρ)(y − C(ρ)x̂) if and only if the following rank condition

rank[O(ρ)] = n with O(ρ) =




C(ρ)
C(ρ)A(ρ)

...
C(ρ)A(ρ)n−1


 (H.194)

holds for all ρ ∈ Uρ.

Proof : This the generalization of the observability rank criterion to LPV systems (see
Appendix B.6. �

Lemma H.4 System (H.191) without control input is robustly detectable with observer ˙̂x =
A(ρ)x̂+ L(ρ)(y − C(ρ)x̂) if and only if the following rank condition

rank[D(s, ρ)] = n with S (s, ρ) =
[
sI −A(ρ)
C(ρ)

]
(H.195)

holds for all ρ ∈ Uρ and s ∈ C+.

Proof : This the generalization of the detectability rank criterion to LPV systems (see
Appendix B.6. �

The latter conditions on controllability and observability allows to certificate that a suit-
able process (control law or observer) exists and allows to obtain both quadratic and robust
stability of the closed-loop system or the estimation error. Hence Lemmas H.1 and H.3 are
conditions for both quadratic and robust stability or observation. But, since it does not take
into account the rate of variation it is difficult to foresee for which maximal bound the system
will remain robustly controllable or observable.

Concerning stabilizability and detectability, defined by Lemmas H.2 and H.4, the quadratic
stabilizability and detectability will be more difficult to obtain since quadratic properties are
very sensitive to the repartition of the modes of the system, especially the uncontrollable and
unobservable modes. On the other hand, robust stability is far less sensitive and would be
easier to achieve.

These results only provide qualitative results by answering by ’no’ or ’yes’, if a system
is quadratically or robustly stabilizable and this remains the main drawback. Indeed, the
absence of the rate of variation into the conditions is a lack of information on the maximal
admissible bound for which the system will be stabilizable or detectable. Finally no construc-
tive approach can be efficiently derived form these conditions. This motivates the necessity
of having other conditions not using rank operators, if possible.

H.1 Controllability and Stabilizability

The objectives of controllability and stabilizability is to provide necessary and sufficient
conditions to the existence of controllers for a given system. These conditions may take,
sometimes equivalent, different forms. In this section, we will only focus on state-feedback
and full-order dynamic output feedback controllers since their existence can be analyzed
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through rank constraints of parameter dependent matrices and LMIs. We will show that,
while observability is difficult to analyze or even impossible, stabilizability can be expressed
in a nice fashion through LMIs. Three main controllabiliy/stabilizability results will de-
ployed: quadratic and robust stabilizability/controllability and stabilizability with average
dwell-time. While the quadratic stabilizability deal with quadratic stabilization, the robust
controllability/stabilizability deals with robust stabilization. Finally, the stabilizability with
average dwell-time deals with the possibility of stabilizing a system even in presence of loss
of stabilizability.

We are interested here in determining if a state-feedback control law of the form

u = K(ρ)x (H.196)

or a full-order dynamic output feedback control law of the form
[
ẋc
u

]
=
[
Ac(ρ) Bc(ρ)
Cc(ρ) Dc(ρ)

] [
xc
y

]
(H.197)

stabilizing LPV system (H.191) exist. In each case, we will aim at giving different equivalent
existence conditions to the existence of each one of the control laws.

H.1.1 Quadratic stabilizability

The quadratic controllability/stabilizability aims at determining if there exist control laws
of the form (H.196) or (H.197) such that system (H.191) controlled by (H.196) or (H.197)
is quadratically stable. It is important to point out that it is difficult to generalize rank
conditions of the controllability matrix in this case (see Appendix B.7). Indeed, the rank
condition allows to determine if there exists a state-feedback control law such that all the
eigenvalues of the closed-loop system lie in the complex left-half plane at an arbitrary location.
However, as discussed and illustrated in Section 1.3.1, it is not sufficient for a LPV system
to have all its eigenvalues in the complex left-half plane to have quadratic stability since
quadratic stability allows for unbounded parameter variation rates. This is the reason for
which quadratic controllability is difficult to express.

The following result provides quadratic stabilizability results for LPV system (H.191) with
a state-feedback control law (H.196).

Lemma H.5 System (H.191) is quadratically stabilizable by a state-feedback control law of
the form (H.196) if and only if one the following equivalent statements holds:

1. There exist X = XT � 0 and Y (ρ) such that the LMI

A(ρ)X +XA(ρ)T +B(ρ)Y (ρ) + Y (ρ)TB(ρ)T ≺ 0 (H.198)

hold for all ρ ∈ Uρ.

2. There exists X = XT � 0 such that the LMI

Ker[B(ρ)T ]T
(
XA(ρ)T +A(ρ)X

)
Ker[B(ρ)T ] ≺ 0 (H.199)

holds for all ρ ∈ Uρ.



H. STABILIZABILITY AND DETECTABILITY OF LPV SYSTEMS 311

3. There exist X = XT � 0 and a scalar function τ(ρ) such that the LMI

XA(ρ)T +A(ρ)X + τ(ρ)B(ρ)B(ρ)T ≺ 0 (H.200)

holds for all ρ ∈ Uρ.

Moreover, if one of the statements holds then a suitable state-feedback control law of the form
(H.196) stabilizing LPV system (H.191) is given by

• either u(t) = K(ρ)x with K(ρ) = Y (ρ)X−1 or

• u(t) = K(ρ)x with K(ρ) = −κB(ρ)TX−1 where κ > 0 satisfies κB(ρ)B(ρ)T−(XA(ρ)T+
A(ρ)X) � 0 and P−1 = X for all ρ ∈ Uρ.

Proof : The proof is as follows. The closed-loop system is given by

ẋ = (A(ρ) +B(ρ)K(ρ))x

and define the Lyapunov function V (x) = xTPx. The closed-loop system is quadratically
stable if and only if the derivative of the Lyapunov function evaluated along the trajectories
solution of the closed-loop system is negative definite for all ρ ∈ Uρ and all x 6= 0. Then,
differentiating V gives

V̇ = xT [(A(ρ) +B(ρ)K(ρ))TP + P (A(ρ) +B(ρ)K(ρ))]x

Assuming that V̇ < 0 we have

(A(ρ) +B(ρ)K(ρ))TP + P (A(ρ) +B(ρ)K(ρ)) ≺ 0
according to a congruence tranformation w.r.t. X = P−1 we get

⇒ X(A(ρ) +B(ρ)K(ρ))T + (A(ρ) +B(ρ)K(ρ))X ≺ 0
with the change of variable Y (ρ) = K(ρ)X we obtain

⇒ XA(ρ) + Y (ρ)TB(ρ)T +A(ρ)X +B(ρ)Y (ρ) ≺ 0

This proves that statement 1) is a necessary condition to quadratic stabilizability. The proof
of sufficiency can be done by following the proof backward: suppose statement 1) holds, then
choosing the state-feedback gain K(ρ) = Y (ρ)X−1 implies

(A(ρ) +B(ρ)K(ρ))TP + P (A(ρ) +B(ρ)K(ρ)) ≺ 0

which proves quadratic stability of the closed-loop system. The first statement is then equiva-
lent to quadratic stabilizability.

Now rewrite the latter inequality of statement 1) in the form

XA(ρ)T +A(ρ)X +B(ρ)Y (ρ) + Y (ρ)TB(ρ)T ≺ 0 (H.201)

Since the matrix Y (ρ) is unconstrained (totally free) then the Finsler’s lemma (extended to the
parameter dependent case) applies (see Appendix E.16) and leads to the following equivalent
inequalities:

Ker[B(ρ)T ]T (XA(ρ)T +A(ρ)X)Ker[B(ρ)T ] ≺ 0
XA(ρ)T +A(ρ)X + τ(ρ)B(ρ)TB(ρ) ≺ 0

(H.202)
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where τ(ρ) is a scalar continuous function to be determined. To provide an expression of a
suitable control law, it suffices to apply results given in Appendix A.9. This concludes the
proof. �

The following result provides quadratic stabilizability results for LPV system (H.191) with
a dynamic output feedback control law (H.197).

Lemma H.6 System (H.191) is quadratically stabilizable by a dynamic output feedback con-
trol law of the form (H.197) if and only if one the following equivalent statements holds:

1. There exist X1 = XT
1 � 0, P1 = P T1 � 0 and (Āc(ρ), B̄c(ρ), C̄c(ρ), D̄c(ρ)) such that the

LMI [
A(ρ)X1 +B(ρ)C̄c(ρ) A(ρ) +B(ρ)D̄c(ρ)C(ρ)

Āc(ρ) P1A(ρ) + B̄c(ρ)C(ρ)

]H
≺ 0

[
X1 I
I P1

]
� 0

(H.203)

hold for all ρ ∈ Uρ.

2. There exist X1 = XT
1 � 0 and P1 = P T1 � 0 such that the LMI

Ker[C(ρ)]T
(
A(ρ)TP1 + P1A(ρ)

)
Ker[C(ρ)] ≺ 0

Ker[B(ρ)T ]T
(
X1A(ρ)T +A(ρ)X1

)
Ker[B(ρ)T ] ≺ 0[

X1 I
I P1

]
� 0

(H.204)

holds for all ρ ∈ Uρ.

3. There exist X1 = XT
1 � 0, P1 = P T1 � 0 and a scalar function τ(ρ) such that the LMI

A(ρ)TP1 + P1A(ρ) + τ(ρ)C(ρ)TC(ρ) ≺ 0
X1A(ρ)T +A(ρ)X1 + τ(ρ)B(ρ)B(ρ)T ≺ 0[
X1 I
I P1

]
� 0

(H.205)

holds for all ρ ∈ Uρ.

Moreover, if one of the statements holds then a suitable state-feedback control law of the form
(H.196) stabilizing LPV system (H.191) is given by

• either the solution of algebraic equations

Ac := (P−1
2 Āc − P−1

2 P1BC̄c)X−T2 − (P−1
2 B̄c − P−1

2 P1BD̄c)CX1X
−T
2

Bc := P−1
2 B̄c − P−1

2 P1BD̄c

Cc : = C̄cX
−T
2 − D̄cCX1X

−T
2

Dc : = D̄c

P2X
T
2 = I − P1X1

or
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• the computation of the following formula

Ω(ρ) := −κ(B̄(ρ)TPΨ(ρ)PB̄(ρ))−1B̄(ρ)TPΨ(ρ)C̄(ρ)T (H.206)

where κ satisfies Ψ(ρ) := (κC̄(ρ)T C̄(ρ)−A(ρ)TP + PA(ρ))−1 � 0 for all ρ ∈ Uρ.

Proof : First of all we need to construct the extended system whose state contains both
system and controller states




ẋ
ẋc
xc
y


 =

[
Ā B̄
C̄ D̄

]



x
xc
ẋc
u


 (H.207)

where
[
Ā(ρ) B̄(ρ)
C̄(ρ) 0

]
=




A(ρ) 0 0 B(ρ)
0 0 I 0
0 I 0 0

C(ρ) 0 0 0


 and let us denote by Ω(ρ) the matrix

[
Ac(ρ) Bc(ρ)
Cc(ρ) Dc(ρ)

]
. The closed-loop system is then given by

˙̄x = (Ā(ρ) + B̄(ρ)Ω(ρ)C̄(ρ))x̄

where x̄ = col(x, xc). Introduce now the Lyapunov function V (x̄) = x̄TPx̄ and computing its
derivative along trajectories solutions of the closed-loop system yields

V̇ (x̄) = x̄T [P (Ā(ρ) + B̄(ρ)Ω(ρ)C̄(ρ)) + (Ā(ρ) + B̄(ρ)Ω(ρ)C̄(ρ))TP ]x̄ (H.208)

To show statement 2), note that since the matrix Ω(ρ) is unconstrained which indicates
that the projection lemma applies (see E.18) and hence the negative definiteness of V̇ is
equivalent to the feasibility of both underlying LMIs

Ker[C̄(ρ)]T (PĀ(ρ) + Ā(ρ)TP )Ker[C̄(ρ)] ≺ 0
Ker[B̄(ρ)T ]T (Ā(ρ)P−1 + P−1Ā(ρ)T )Ker[B̄(ρ)] ≺ 0

(H.209)

The conditions above are apparently not LMI due to the presence of matrices P and P−1, but
actually they are. This is shown hereafter. We have the following equalities:

Ker[C̄(ρ)] = Ker
[

0 I
C(ρ) 0

]
=
[

Ker[C(ρ)]
0

]

Ker[B̄(ρ)T ] = Ker
[

0 I
B(ρ)T 0

]
=
[

Ker[B(ρ)T ]
0

] (H.210)

Finally inequalities (H.209) become

Ker[C(ρ)]T (P1A(ρ) +A(ρ)TP1)Ker[C(ρ)] ≺ 0
Ker[B(ρ)T ]T (A(ρ)X1 +X1A(ρ)T )Ker[B(ρ)] ≺ 0

(H.211)

where P =
[
P1 ∗
∗ ∗

]
and X =

[
X1 ∗
∗ ∗

]
(∗ means ’do not care’). In virtue of the completion

lemma (see Appendix E.19) the matrices P1 and X1 can be considered as independent by
adding the LMI [

P1 I
I X1

]
� 0



314 CHAPTER 6. APPENDIX

ensuring that the whole matrices P and X can be constructed from these two blocks. This
shows that quadratic stabilizability by full-order dynamic output feedback is equivalent to state-
ment 2).

We show now the equivalence between statements 2) and 3). First rewrite inequalities in
the compact form

[
Ker[C(ρ)] 0

0 Ker[B(ρ)T ]

]T [
P1A(ρ) +A(ρ)TP1 0

0 A(ρ)X1 +X1A(ρ)T

]
(?)T ≺ 0

(H.212)
and according to the Finsler’s lemma extended to the parameter dependent case (see Appendix
E.16) this is equivalent to the existence of a continuous scalar function τ(ρ) such that the
LMI

[
P1A(ρ) +A(ρ)TP1 0

0 A(ρ)X1 +X1A(ρ)T

]
+ τ(ρ)

[
C(ρ)TC(ρ) 0

0 B(ρ)B(ρ)T

]
≺ 0

(H.213)
is feasible for all ρ ∈ Uρ. This proves the equivalence of statement 2) and 3).

We aim now at showing that quadratic stabilizability is equivalent to statement 1). It is
convenient to introduce here the following matrix

Z =
[
X1 I
XT

2 0

]
(H.214)

which satisfies

ZTP =
[
X1 I
XT

2 0

]T [
P1 P2

P T2 P3

]
=
[
X1P1 +X2P2 X1P2 +X2P3

P1 P2

]
=
[
I 0
P1 P2

]

ZTPZ =
[
I 0
P1 P2

] [
X1 I
XT

2 0

]
=
[
X1 I
I P1

]

(H.215)
Come back to inequality (H.208) and performing a congruence transformation with respect to

matrix Z =
[
X1 I
XT

2 0

]
gives

M(ρ) +M(ρ)T ≺ 0 (H.216)

where

M(ρ) =
[
I 0
P1 P2

]([
A(ρ) 0

0 0

]
+
[

0 B(ρ)
I 0

]
Ω(ρ)

[
0 I

C(ρ) 0

])[
X1 I
XT

2 0

]

=
[

AX1 +BCcX
T
2 +BDcX1 A+BDcC

P1AX1 + P2AcX
T
2 + P1BCcX

T
2 + P2BcCX1 + P1BDcCX1 P1A+ P2BcC + P1BDcC

]

=
[
A(ρ)X1 A(ρ)

0 P1A(ρ)

]
+
[

0 B(ρ)
I 0

]([
P1A(ρ)X1 0

0 0

]

+
[
P2 P1B(ρ)
0 I

] [
Ac(ρ) Bc(ρ)
Cc(ρ) Dc(ρ)

] [
XT

2 0
C(ρ)X1 I

])[
I 0
0 C(ρ)

]

(H.217)
Then the change of variable

[
Āc(ρ) B̄c(ρ)
C̄c(ρ) D̄c(ρ)

]
=
[
P1A(ρ)X1 0

0 0

]
+
[
P2 P1B(ρ)
0 I

] [
Ac(ρ) Bc(ρ)
Cc(ρ) Dc(ρ)

] [
XT

2 0
C(ρ)X1 I

]

(H.218)
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linearizes the problem. Indeed, in virtue of the completion lemma, the matrices X1 and P1

can be chosen independently. Moreover the change of variable from

(Ac(ρ), Bc(ρ), Cc(ρ), Dc(ρ))→ (Āc(ρ), B̄c(ρ), C̄c(ρ), D̄c(ρ))

is bijective. To see this just note that matrices
[
P2 P1B(ρ)
0 I

]
and

[
XT

2 0
C(ρ)X1 I

]

are both invertible provided that P2 and X2 are nonsingular. Actually they can always be
chosen to fit this constraint using a small perturbation term, this is shown below. Suppose that

P =
[
P1 P2

P2 P3

]
� 0 in which P2 is singular and P satisfies some LMI. Then there exists a

sufficiently small scalar ε such that the LMI is also feasible with Pε =
[

P1 P2 + εI
P T2 + εI P3

]
�

0 where P2 + εI is invertible.
Finally, M(ρ) becomes

M(ρ) =
[
A(ρ)X1 A(ρ)

0 P1A(ρ)

]
+
[

0 B(ρ)
I 0

] [
Āc(ρ) B̄c(ρ)
C̄c(ρ) D̄c(ρ)

] [
I 0
0 C(ρ)

]
(H.219)

and hence the derivative of the Lyapunov function is expressed as a LMI in the variables
P1 = P T1 � 0, X1 = XT

1 � 0,Āc(ρ), B̄c(ρ), C̄c(ρ), D̄c(ρ):

[
A(ρ)X1 +B(ρ)C̄c(ρ) A(ρ) +B(ρ)D̄c(ρ)C(ρ)

Āc(ρ) P1A(ρ) + B̄c(ρ)C(ρ)

]H
≺ 0 (H.220)

We aim now at proving the expression of the controller matrices Ac, Bc, Cc and Dc. A
classical method is to use the reciprocal of the change of variable. In this case we have
[
Ac Bc
Cc Dc

]
:=
[
P2 P1B(ρ)
0 I

]−1([
Āc(ρ) B̄c(ρ)
C̄c(ρ) D̄c(ρ)

]
−
[
P1A(ρ)X1 0

0 0

])[
XT

2 0
C(ρ)X1 I

]−1

(H.221)
We have the following relations:

[
P2 P1B(ρ)
0 I

]−1

=
[
P−1

2 −P−1
2 P1B

0 I

]

[
XT

2 0
C(ρ)X1 I

]−1

=
[

X−T2 0
−CX1X

−T
2 I

]

and using these latter expressions into (H.221) and expanding the results equations yields the
explicit expression for Ac, Bc, Cc and Dc.

In view of proving the second explicit expression, apply the results of Appendix A.9 on
inequality (H.208). �

We have shown that the quadratic stabilizability of LPV systems in both state-feedback
and dynamic output feedback cases can be cast as a LMI problem. Of course, all statements
are not equivalent from a computational point of view. Indeed, in each lemma, the statements
1) and 3) involve at least one parameter dependent matrix as a variable of the SDP. As
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explained in Section 1.3.3.1, such variables cannot be computed exactly and is then a source
of conservatism. On the other hand, statement 2) does not involve such terms and allows for
an efficient and nonconservative stabilization tests.

On the other hand, if for some reasons, the controller should have a specific parameter
dependence (e.g. a quadratic dependence on the parameter K(ρ) = K0 +K1ρ+K2ρ

2), then
statements 2) should be considered instead.

H.1.2 Robust controllability and stabilizability

Since quadratic stability is rather conservative, except when the parameters actually admit
discontinuities in their trajectories, it would be more convenient to consider the problem of
robust controllability and robust stabilizability in order to provide less conservative conditions.
The results will be given without proofs since they are roughly similar to proofs of the previous
section. In the following, both robust controllability and stabilizability will be addressed.
Indeed, while the quadratic controllability has not been presented for technical reasons, the
robust controllability (for state-feedback control laws) has been in Lemma H.1. The essential
reason is the simplicity of the conditions involved in robust controllability. Finally, robust
stabilizability will be introduced and expressed in terms of parameter dependent LMIs.

Lemma H.7 System (H.191) is robustly stabilizable by a state-feedback control law of the
form (H.196) if and only if one the following equivalent statements holds:

1. There exist a continuously differentiable matrix function X(ρ) = X(ρ)T � 0 and a
continuous matrix function Y (ρ) such that the LMI

A(ρ)X +XA(ρ)T +B(ρ)Y (ρ) + Y (ρ)TB(ρ)T −
∑

i

νi
∂X(ρ)
∂ρi

≺ 0 (H.222)

hold for all ρ ∈ Uρ and all ν = coli(νi) ∈ Uν .

2. There exists a continuously differentiable matrix function X(ρ) = X(ρ)T � 0 such that
the LMI

Ker[B(ρ)T ]T
(
X(ρ)A(ρ)T +A(ρ)X(ρ)−

∑

i

νi
∂X(ρ)
∂ρi

)
Ker[B(ρ)T ] ≺ 0 (H.223)

holds for all ρ ∈ Uρ and all ν = coli(νi) ∈ Uν .

3. There exist a continuously differentiable matrix function X(ρ) = X(ρ)T � 0 and a
scalar function τ(ρ) such that the LMI

X(ρ)A(ρ)T +A(ρ)X(ρ) + τ(ρ)B(ρ)B(ρ)T −
∑

i

νi
∂X(ρ)
∂ρi

≺ 0 (H.224)

holds for all ρ ∈ Uρ and all ν = coli(νi) ∈ Uν .

Moreover, if one of the statements holds then a suitable state-feedback control law of the form
(H.196) stabilizing LPV system (H.191) is given by

• either u(t) = Y (ρ)X(ρ)−1 or
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• u(t) = −κB(ρ)TX(ρ)−1x(t) with P (ρ)−1 = X(ρ) and where κ > 0 satisfies

κB(ρ)B(ρ)T − (X(ρ)A(ρ)T +A(ρ)X(ρ)−
∑

i

νi
∂X(ρ)
∂ρi

) � 0

for all ρ ∈ Uρ and all ν = coli(νi) ∈ Uν .

Proof : The proof is identical as for Lemma H.5 using formulae X(ρ) = P (ρ)−1, Ẋ(ρ) =

−X(ρ)Ṗ (ρ)X(ρ) and Ẋ(ρ) =
∑

i

∂X(ρ)
∂ρi

ρ̇i. �

Lemma H.8 System (H.191) is robustly stabilizable by a dynamic output feedback control
law of the form (H.197) if and only if there exist continuously differentiable matrix functions
X1(ρ) = X1(ρ)T � 0 and P1(ρ) = P1(ρ)T � 0 such that the LMI

Ker[C(ρ)]T
(
A(ρ)TP1(ρ) + P1(ρ)A(ρ) +

∑
i νi

∂P1(ρ)
∂ρi

)
Ker[C(ρ)] ≺ 0

Ker[B(ρ)T ]T
(
X1(ρ)A(ρ)T +A(ρ)X1(ρ)−∑i νi

∂X1(ρ)
∂ρi

)
Ker[B(ρ)T ] ≺ 0

[
P1(ρ) I
I X1(ρ)

]
� 0

(H.225)

holds for all ρ ∈ Uρ and ν = coli(νi) ∈ Uν . In this case, the controller satisfies the following
LMI

(Ā(ρ) + B̄(ρ)Ω(ρ)C̄(ρ))TP (ρ) + P (ρ)(Ā(ρ) + B̄(ρ)Ω(ρ)C̄(ρ)) +
∑

i

νi
∂P (ρ)
∂ρi

≺ 0 (H.226)

for all ρ ∈ Uρ and ν = coli(νi) ∈ Uν .

Proof : The proof is similar as for Lemma H.6. �
Note that the robust stabilizability by dynamic output feedback, only the projected con-

ditions have been provided. The main reason is the computational complexity of this result
compared to method of change of variable. But the controller computation cannot be given
explicitly since, in this case, it would depend on the derivative of the parameters[Apkarian
and Adams, 1998, Lu et al., 2006], which are generally considered as difficult to measure
or estimate. The method using the change of variables also leads to such a controller. In
[Apkarian and Adams, 1998], these controllers are considered to be practically invalid (unim-
plementable) and simplifications are provided in order to avoid such complications.

In the current discussion, annoying terms involving parameters derivative are avoided
by considering the controller depending exclusively on the parameters as a solution of LMI
(H.226). In this case, the controller matrix must be decomposed on a basis in order to get
a tractable LMI problem. If a too simple basis is chosen then the problem may become
unfeasible while the projected conditions are. In this case, the basis should be extended in
order to reach a feasible LMI problem.
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H.1.3 Stabilizability with average dwell-time

We provide here stabilizability in the context of average-dwell time which was initially pro-
vided for switched systems [Hespanha and Morse, 1999]. As explained in Section 1.3.1 for the
stability problem, the problem of stabilization with average dwell-time addresses the problem
of existence of a controller which cannot place all the eigenvalues of the closed-loop system
in the complex left-half plane (i.e. there exists parameter values for which the system is not
stabilizable). In such a case, the stability of the closed-loop system can be ensured provided
that some constraints on parameter trajectories are fulfilled. For more details on dwell-time
results, the readers should refer to [Hespanha et al., 2001, Hespanha and Morse, 1999, Mo-
hammadpour and Grigoriadis, 2007b] and Section 1.3.1. The following discussion has not
been provided in the literature and is a personal development. Moreover, only the quadratic
stabilizability by state-feedback with average dwell-time will be introduced for sake of brevity
but robust stabilizability with average dwell-time is possible to define.

First consider that the compact set of values of the parameters, denoted here Uρ can be
separated into two subsets Uu and Us such that Uu ∪ Us = Uρ and Uu ∩ Us = ∅. These two
subsets characterize respectively the set of parameters for which the system is not stabilizable
and stabilizable respectively. Introduce the characteristic measure δu(α) of the set Uu such
that

δu(α) =
{

1 if α ∈ Uu
0 if α ∈ Us (H.227)

and the quantity

Tp(τ, t) =
∫ t

τ
δu(ρ(t))dt (H.228)

The following lemmas provide the main result of that section.

Lemma H.9 The LPV system (H.191) is quadratically stabilizable with average dwell-time
by parameter-dependent state-feedback (H.196) if and only there exist a matrix X = XT � 0,
scalars β,$ > 0 such that the LMIs

Ker[B(ρ)T ]T [XA(ρ)T +XA(ρ)T ]Ker[B(ρ)T ] ≺ −2$Ker[B(ρ)T ]TXKer[B(ρ)T ] if ρ ∈ Us
Ker[B(ρ)T ]T [XA(ρ)T +XA(ρ)T ]Ker[B(ρ)T ] ≺ 2βKer[B(ρ)T ]TXKer[B(ρ)T ] if ρ ∈ Uu

(H.229)
are feasible. In this case a suitable control law of the form (H.196) stabilizing LPV system
(H.191) with (average dwell-time) decay rate $−($+β)α and maximal ratio α < α∗ =

$

$ + β
is given by is given by the equations:

u = K(ρ)xwhere K(ρ) = −κB(ρ)TX−1 (H.230)

where κ is chosen satisfying

κB(ρ)B(ρ)T −XA(ρ)T −A(ρ)X + 2$X � 0 if ρ ∈ Us
κB(ρ)B(ρ)T −XA(ρ)T −A(ρ)X − 2βX � 0 if ρ ∈ Uu

Proof : Let us consider the Lyapunov function

V (x) = xTPe−2δ(t)tx (H.231)
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where

δ(t) :=
{
−$ if ρ(t) ∈ Us
β if ρ(t) ∈ Uu

with β,$ > 0. The computation of the time derivative of V along trajectories solutions of
the closed-loop system yields

V̇ (t) < 0⇔ (A(ρ) +B(ρ))TP + P (A(ρ) +B(ρ)) ≺ 2δ(t)P (H.232)

It is possible to rewrite it into two parts

(A(ρ) +B(ρ)K(ρ))TP + P (A(ρ) +B(ρ)K(ρ)) ≺ −2$P if ρ ∈ Us
(A(ρ) +B(ρ)K(ρ))TP + P (A(ρ) +B(ρ)K(ρ)) ≺ 2βP if ρ ∈ Uu (H.233)

Performing a congruence transformation with respect to X = P−1 and applying the Finsler’s
lemma (see Appendix E.16) yields

Ker[B(ρ)T ]T [XA(ρ)T +A(ρ)X]Ker[B(ρ)T ] ≺ −2$Ker[B(ρ)T ]TXKer[B(ρ)T ] if ρ ∈ Us
Ker[B(ρ)T ]T [XA(ρ) +A(ρ)X]Ker[B(ρ)T ] ≺ 2βKer[B(ρ)T ]TXKer[B(ρ)T ] if ρ ∈ Uu

(H.234)
If the two following LMIs are satisfied, then it is possible to find a state-feedback matrix

such that (H.233) are satisfied. In this case, we have

V̇ (t) <
{
−2$V (t) if ρ ∈ Us
2βV (t) if ρ ∈ Uu (H.235)

Solving this linear differential inequality leads to

V (t) < exp[−2$(t− τ − Tp(τ, t)) + 2βTp(τ, t)]V (τ)
< exp[−2$(t− τ) + 2($ + β)Tp(τ, t)]V (τ)
< exp ([2($ + β)α− 2$](t− τ)) exp[2($ + β)T0]V (τ)

(H.236)

Hence, the Lyapunov function is strictly decreasing if the inequality 2($ + β)α− 2$ < 0
holds. This is satisfied for any α < α∗ =

$

$ + β
and in this case, the decay rate of the

closed-loop system is at least of $− ($+β)α. Finally the explicit construction of the control
law is made using relations of Appendix A.8. �

The following example shows an application of the latter lemma.

Example H.10

ẋ(t) =
[

1 ρ(t)
0 1

]
x(t) +

[
0
1

]
u(t) (H.237)

where ρ(t) = fth(sin(t)) where fth(x) is the dead-band function such that

fth(η) :=





0 if |η| ≤ th
η − th if η > th
−η + th if η < −th

(H.238)

with th ≥ 0. Note that for th = 0, the parameter reduces to the expression ρ(t) = sin(t). It
is clear that there are a loss of stabilizability whenever ρ(t) reaches 0. With the help of the
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dead-band function, we will modulate the duration of the unstabilizability and show that from
a certain threshold th0 the system looses parametric global stabilizability.

Due to the periodicity of the parameter, it is sufficient to evaluate the quantity Tp over
one period only and hence we find

Tp(2kπ, 2(k + 1)π) = 4 arcsin(th) (H.239)

and hence the instability ration α =
2 arcsin(th)

π
.

We retrieve the fact that for th = 0 then Tp(2kπ, 2(k + 1)π) = 0 and the system is
stabilizable almost everywhere. It is clear that the minimal value for β is 1 (the eigenvalue
corresponding to unstabilizable mode whenever ρ = 0). Hence the idea now is to provide a
bound on the decay rate of the stable part guaranteeing the parametric global stability of the
closed-loop system. We must have

α < α∗ =
$

$ + β
=

$

$ + 1
(H.240)

Hence we get
2 arcsin(th)

π
<

$

$ + 1
(H.241)

and finally

$ >
2 arcsin(th)

π − 2 arcsin(th)
(H.242)

In the general case, $ must obey

$ >
2 arcsin(th)

πβ − 2 arcsin(th)
(H.243)

Figure 6.7 shows the evolution of the minimal bound of $ for which the system is para-
metrically globally stable. For any $ belonging to surface above the curve, the system is
parametrically globally stable.

Figure 6.7: Evolution of the lower bound of $ with respect to the dead-band width th
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Finally the problem remains to find a suitable control law such that for every parameter

value of P, the decay rate of the closed-loop system is at least of
2 arcsin(th)

πβ − 2 arcsin(th)
.

H.2 Observability and Detectability

Similar results on observability and detectability are provided in this section. Whenever
proofs are qualitatively identical, they will be omitted. This section addresses the problem of
finding full-order observers of the form

˙̂x = A(ρ)x̂+ L(ρ)(y − C(ρ)x̂) (H.244)

or the form
˙̂x = M(ρ)x̂+N(ρ)y (H.245)

for LPV systems of the form (H.191). For simplicity system (H.191) is considered uncontrolled
(i.e. u ≡ 0).

It is clear that observer (H.244) is a particular case of (H.245) by choosing M(ρ) =
A(ρ) − L(ρ)C(ρ) and N(ρ) = L(ρ). The difference between these observers is the greater
flexibility offered by observer (H.245) which has a larger number of degree of freedom, leading
then to a more powerful design technique; this is actually more visible when dealing with
systems with disturbances and performances specifications. It would be also possible to
define detectability for low-order observers but this is omitted for brevity. Such observers will
be designed in Section 4.1.

H.2.1 Quadratic observability and detectability

This section is devoted to the existence of quadratic observers. By quadratic observers we
mean that an observer such that the estimation error is quadratically stable exists. The
problem of existence of both types of observers (i.e. (H.244) and (H.244)) will be addressed
in which necessary and sufficient conditions will be provided.

Lemma H.11 There exists a quadratic observer of the form (H.244) for system (H.191) with
no control input if and only if the following equivalent statements holds:

1. There exists P = P T � 0 and Y (ρ) such that

A(ρ)TP + PA(ρ) + Y (ρ)C(ρ) + C(ρ)TY (ρ)T ≺ 0 (H.246)

holds for all ρ ∈ Uρ.

2. There exists P = P T � 0 such that

Ker[C(ρ)]T (A(ρ)TP + PA(ρ))Ker[C(ρ)] ≺ 0 (H.247)

holds for all ρ ∈ Uρ.

3. There exists P = P T � 0 and a scalar function τ(ρ) such that

A(ρ)TP + PA(ρ)− τ(ρ)C(ρ)TC(ρ) ≺ 0 (H.248)

holds for all ρ ∈ Uρ.
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In this case, a suitable observer gain L(ρ) is given by

• either L(ρ) = P−1Y (ρ); or

• L(ρ) = κP−1C(ρ) where κ is chosen such that

(κC(ρ)TC(ρ)−A(ρ)TP + PA(ρ))−1 � 0

Proof : The proof is similar as for quadratic stabilizability by state-feedback. �

Lemma H.12 There exists a quadratic observer of the form (H.245) for system (H.191) with
no control input if and only if the following equivalent statements holds in which

Ψ(ρ) = A(ρ)(I + C(ρ)TC(ρ))−1
[
I C(ρ)T

]

Φ(ρ) = I −
[

I
C(ρ)

]
(I + C(ρ)TC(ρ))−1

[
C(ρ)T I

]

1. There exists a matrix P = P T � 0 such that

M(ρ)TP + PM(ρ) � 0 (H.249)

holds for all ρ ∈ Uρ and M(ρ) +N(ρ)C(ρ)−A(ρ) = 0.

2. There exists a matrix P = P T � 0 and Y (ρ) such that

JT1 (PΨ(ρ) + Y (ρ)Φ(ρ))TP + (PΨ(ρ) + Y (ρ)Φ(ρ))J1 ≺ 0 (H.250)

holds for all ρ ∈ Uρ and J1 =
[
I 0

]T .

3. There exists a matrix P = P T � 0 and Y (ρ) such that

Ker[Φ(ρ)J1]T
[
JT1 Ψ(ρ)TP + PΨ(ρ)J1

]
Ker[Φ(ρ)J1] ≺ 0 (H.251)

holds for all ρ ∈ Uρ and J1 =
[
I 0

]T .

In these cases, the observer matrices can be computed by

• either M(ρ) = (Ψ(ρ) + Y (ρ)P−1Φ(ρ))J1 and N(ρ) = (Ψ(ρ) + Y (ρ)P−1Φ(ρ))J2; or

• M(ρ) = (Ψ(ρ) − κΦ(ρ)P−1Φ(ρ))J1 and N(ρ) = (Ψ(ρ) − κΦ(ρ)P−1Φ(ρ))J2 where κ is
chosen such that

[
κJT1 Φ(ρ)TΦ(ρ)J1 − (JT1 Ψ(ρ)TP + PΨ(ρ)J1)

]−1 � 0

with J1 =
[
I 0

]T and J1 =
[

0 I
]T .

Proof : The dynamic of the error e = x− x̂ is given by

ė = A(ρ)x−M(ρ)x̂−N(ρ)C(ρ)x
= (A(ρ)−N(ρ)C(ρ))x−M(ρ)x̂
= M(ρ)e+ (A(ρ)−N(ρ)C(ρ)−M(ρ))x

Since the error is desired to be independent of the state x, then matrices M(ρ) and N(ρ) are
chosen to fulfill the conditions



H. STABILIZABILITY AND DETECTABILITY OF LPV SYSTEMS 323

1. M(ρ) quadratically stable

2. A(ρ)−N(ρ)C(ρ)−M(ρ) = 0 for all ρ ∈ Uρ

In this case, the error e is autonomous and quadratically stable. Rewrite the equality into the

compact sform
[
M(ρ) N(ρ)

] [ I
C(ρ)

]
= A(ρ) and since

[
I

C(ρ)

]
has full-column rank

then all solutions are given by (see Appendix A.8)

[
M(ρ) N(ρ)

]
= A(ρ)

[
I

C(ρ)

]+

+ Z(ρ)

(
I −

[
I

C(ρ)

] [
I

C(ρ)

]+
)

(H.252)

where Z(ρ) is an arbitrary matrix.
Denoting

Ψ(ρ) = A(ρ)
[

I
C(ρ)

]+

Φ(ρ) = I −
[

I
C(ρ)

] [
I

C(ρ)

]+

J1 =
[
I
0

]

J2 =
[

0
I

]

such that M(ρ) =
[
M(ρ) N(ρ)

]
J1 and N(ρ) =

[
M(ρ) N(ρ)

]
J2.

The explicit expression of the pseudoinverse is given by

[
I

C(ρ)

]+

= (C(ρ)TC(ρ) + I)−1
[
I C(ρ)T

]
(H.253)

and hence we have

Ψ(ρ) = A(ρ)(C(ρ)TC(ρ) + I)−1
[
I C(ρ)T

]

Φ(ρ) = I −
[

I
C(ρ)

]
(I − C(ρ)TC(ρ))−1

[
I C(ρ)T

]

Then the error evolution is governed by

ė = (Ψ(ρ) + Z(ρ)Φ(ρ))J1 (H.254)

Define the Lyapunov function V (e) = eTPe and computing the time derivative along
trajectories solutions of (H.254) gives

V̇ = eT [JT1 (Ψ(ρ) + Z(ρ)Φ(ρ))TP + P (Ψ(ρ) + Z(ρ)Φ(ρ))J1]e < 0 (H.255)

in which the change of variable Y (ρ) = PZ(ρ) linearizes the problem and yields

JT1 (PΨ(ρ) + Y (ρ)Φ(ρ))TP + (PΨ(ρ) + Y (ρ)Φ(ρ))J1 ≺ 0 (H.256)
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This shows statements 1) and 2).
Now applying the Finsler’s lemma (see Appendix E.16) we get

Ker[Φ(ρ)J1]T
[
JT1 Ψ(ρ)TP + PΨ(ρ)J1

]
Ker[Φ(ρ)J1] ≺ 0 (H.257)

which shows statement 3). Finally applying results of Appendix A.8, the observer gains ex-
pressions are computed. �

The latter quadratic detectability conditions involve LMIs and algebraic equalities which
make their verification a simple task. However, quadratic detectability remains a conservative
property since it allows for unbounded parameter variation rates.

H.2.2 Robust observability and detectability

Robust observability and detectability provide less conservative condition by taking into ac-
count bounds on rate of parameter variation. In the robust framework, both observability
and detectability will be addressed. The main reason for which observability is addressed
in the robust framework stems from the fact that for a system to be robustly stable (i.e.
the estimation error) it suffices that all the eigenvalues of the system matrix have negative
real part for all parameters values (sufficient condition) while for quadratic stability this is
necessary condition only.

The main drawbacks of the latter conditions come from the use of rank operators of param-
eter dependent matrices. Such conditions are computationally difficult to verify. Moreover,
even if it possible to state that a robust observer effectively exists, then it is not possible
to foresee for which bound on parameter derivatives it works. This motivates the following
results, based on LMIs depending on rate of parameter variations.

Lemma H.13 There exists a robust observer of the form (H.244) for system (H.191) with
no control input if and only if the following equivalent statements holds:

1. There exist a continuously differentiable matrix function P (ρ) = P (ρ)T � 0 and a
continuous matrix function Y (ρ) such that

A(ρ)TP (ρ) + P (ρ)A(ρ) + Y (ρ)C(ρ) + C(ρ)TY (ρ)T +
∑

i

νi
P (ρ)
∂ρi

≺ 0 (H.258)

holds for all ρ ∈ Uρ and ν = coli(νi) ∈ Uν .

2. There exists a continuously differentiable matrix function P (ρ) = P (ρ)T � 0 such that

Ker[C(ρ)]T (A(ρ)TP (ρ) + P (ρ)A(ρ) +
∑

i

νi
P (ρ)
∂ρi

)Ker[C(ρ)] ≺ 0 (H.259)

holds for all ρ ∈ Uρ and ν = coli(νi) ∈ Uν .

3. There exist a continuously differentiable matrix function P (ρ) = P (ρ)T � 0 and a scalar
function τ(ρ) such that

A(ρ)TP (ρ) + P (ρ)A(ρ) +
∑

i

νi
P (ρ)
∂ρi

− τ(ρ)C(ρ)TC(ρ) ≺ 0 (H.260)

holds for all ρ ∈ Uρ and ν = coli(νi) ∈ Uν .
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In this case, a suitable observer gain L(ρ) is given by

• either L(ρ) = P (ρ)−1Y (ρ); or

• L(ρ) = κP (ρ)−1C(ρ) where κ is chosen such that

(κC(ρ)TC(ρ)−A(ρ)TP (ρ) + P (ρ)A(ρ)−
∑

i

νi
P (ρ)
∂ρi

)−1 � 0

Proof : The proof is similar as for robust stabilizability by state-feedback. �

Lemma H.14 There exists a robust observer of the form (H.245) for system (H.191) with
no control input if and only if the following equivalent statements holds:

1. There exists a continuously differentiable matrix function P (ρ) = P (ρ)T � 0 such that

M(ρ)TP (ρ) + P (ρ)M(ρ) +
∑

i

νi
P (ρ)
∂ρi

� 0 (H.261)

holds for all ρ ∈ Uρ and ν = coli(νi) ∈ Uν such that M(ρ) +N(ρ)C(ρ)−A(ρ) = 0.

2. There exists a continuously differentiable matrix function P (ρ) = P (ρ)T � 0 and a
continuous function Y (ρ) such that

JT1 (P (ρ)Ψ(ρ) + Y (ρ)Φ(ρ))TP + (P (ρ)Ψ(ρ) + Y (ρ)Φ(ρ))J1 +
∑

i

νi
P (ρ)
∂ρi

≺ 0 (H.262)

holds for all ρ ∈ Uρ and ν = coli(νi) ∈ Uν .

3. There exists a matrix a continuously differentiable matrix function P (ρ) = P (ρ)T � 0
such that

Ker[Φ(ρ)J1]T
[
JT1 PΨ(ρ)P + PΨ(ρ)J1 +

∑

i

νi
P (ρ)
∂ρi

]
Ker[Φ(ρ)J1] ≺ 0 (H.263)

holds for all ρ ∈ Uρ and ν = coli(νi) ∈ Uν .

In these cases, the observer matrices can be computed by

• either M(ρ) = (Ψ(ρ) + Y (ρ)P (ρ)−1Φ(ρ))J1 and N(ρ) = (Ψ(ρ) + Y (ρ)P (ρ)−1Φ(ρ))J2;
or

• M(ρ) = (Ψ(ρ)− κΦ(ρ)P (ρ)−1Φ(ρ))J1 and N(ρ) = (Ψ(ρ)− κΦ(ρ)P (ρ)−1Φ(ρ))J2 where
κ is chosen such that

[
κJT1 Φ(ρ)TΦ(ρ)J1 − (JT1 Ψ(ρ)TP (ρ) + P (ρ)Ψ(ρ)J1)

]−1 � 0

Proof : The proof is similar as for quadratic observability by observer of the form (H.245).
�
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I Controllability and Observability of TDS

The controllability and observability of time-delay systems have been studied in Eising [1982],
Kamen [1978], Lee and Olbrot [1981, 1982], Morse [1976], Sontag [1976] in the module frame-
work. See Delfour and Mitter [1972], Lee and Olbrot [1981], Manitius and Triggiani [1978] for
the representation over Banach functional spaces and see Lee and Olbrot [1981], Olbrot [1972,
1973], Weiss [1967] for models expressed as functional differential equations. Controllability of
time-delay systems is rather more difficult than their finite dimensional counterpart: several
nonequivalent controllability/observability properties can be defined and depend on the type
of representation used to model time-delay systems. In Lee and Olbrot [1981], bridges are
lighted between these different notions related to different time-delay system representations.

In this section, we will focus on time-delay systems of the form Let us consider system

ẋ(t) = Ax(t) +Ahx(t− h) +Bu(t)
y(t) = Cx(t)

(I.264)

whose corresponding Laplace transform is given by

[sI −A−Ahe−sh]X(s) = BU(s)
Y (s) = CX(s)

(I.265)

I.1 Spectral Controllability and Stabilizability

Among all different fundamental definitions of controllability and observability, only the so-
called spectral controllability will be introduced here. An important property related to spec-
tral controllability is that all the modes of the closed-loop system (observer) can be placed at
any chosen values in a finite number (finite spectrum assignment).

In the finite dimensional case, it is well known that the system ẋ = Ax+ Bu, A ∈ Rn×n
is controllable (see Appendix B.7) if and only if one of the following statement holds:

1. rank
[
sI −A B

]
= n for all s ∈ λ(A)

2. rank
[
B AB . . . An−1B

]
= n

The controllability of a LTI system is equivalent to the existence of a state-feedback control
law such that all the poles of the closed-loop system can be placed arbitrarily in the complex
plane. A direct idea would be to generalize this notion directly to time-delay systems by
mean of the condition

rank
[
sI −A−Ahe−sh B

]
= n ⇐⇒ rank

[
B (A+Ahe

−sh)B . . . (A+Ahe
−sh)n−1B

]
= n

(I.266)
holds for all s ∈ {τ ∈ C : det(τI −A−Ahe−τh) = 0}. But actually such a criterion is wrong
according to [Spong and Tarn, 1981] where the following counterexample is provided.

Example I.1

[
ẋ1(t)
ẋ2(t)

]
=
[

1 1/2
0 0

] [
x1(t)
x2(t)

]
+
[

0 −1
0 1

] [
x1(t− h)
x2(t− h)

]
+
[

0
1

]
u(t) (I.267)
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For this system we have

A+Ahe
−sh =

[
1 1/2− e−sh
0 e−sh

]

sI −A−Ahe−sh =
[
s− 1 −1/2 + e−sh

0 s− e−sh
] (I.268)

Letting h = 2 ln 2, it is easily verified that

rank
[
sI −A− 4−sAh B

]
= rank

[
s− 1 −1/2 + 4−s 0

0 s− 4−s 1

]
= n

since it is impossible to find s ∈ {τ ∈ C : det(τI−A−4−τAh) = 0} such that the terms (1,1)
and (1,2) or (1,2) and (2,2) vanish simultaneously. On the other hand,

rank
[
B (A+Ah4−s)B

]
=
[

0 1/2 + 4−s

1 4−s

]
< 2

for all s ∈ {τ ∈ C : det(τI −A− 4−τAh) = 0} since for s = 1/2 we have 1/2 + 4−1/2 = 0.

This counterexample emphasized that the controllability of a time-delay system cannot
be viewed as a simple extension of controllability of LTI systems. This leads us to the notion
of spectral controllability leaning on the the representation of time-delay system over a ring
of operator [Morse, 1976, Sontag, 1976]. The following theorem, proved in [Spong and Tarn,
1981], provides a necessary and sufficient condition for spectral controllability of (I.264).

Theorem I.2 Time-delay (I.264) is spectrally controllable if and only if the following state-
ments hold:

1. rank
[
sI −A−A−shh B

]
= n forall s ∈ {τ ∈ C : det(τI − A − A−τhh ) = 0} ∩ {τ ∈

C : rank
[
B Ã(e−τh)B . . . Ã(e−τh)n−1B

]
< n}

2. rank
[
B Ã(∇)B . . . Ã(∇)n−1B

]
= n for all ∇ ∈ R[∇] is the ring of polynomials

(weak R-controllability).

The interest of this test resides in its simplicity of application, it involves nothing more
than solving a polynomial equation (weak R-controllability) and then verifying that the roots
verify a given property. For more details on different controllability definitions, please refer
to [Morse, 1976, Spong and Tarn, 1981, ?].

It seems obvious that spectral controllability may depend on the values of delay h.

Definition I.3 If stabilizability/detectability condition holds for any delay, the system is said
to be delay-independent stabilizable/detectable and otherwise, it is delay-dependent stabiliz-
able/detectable.

The following example provides a delay-dependent spectrally controllable time-delay sys-
tem:



328 CHAPTER 6. APPENDIX

Example I.4

ẋ(t) =
[

2 0
0 −2

]
x(t) +

[
−1 2
2 1

]
x(t− h) +

[
1
1

]
u(t) (I.269)

Then we have
[
B Ã(∇)B

]
=
[

1 ∇+ 2
1 2∇− 2

]

Therefore the system is weakly-controllable (the matrix is of full rank over the ring of polyno-
mial R[∇]. Hence the system is spectrally controllable if and only if

[
λ0 + 2 −8 1
−4 λ0 − 2 1

]
= 2 (I.270)

for all λ0 ∈ {τ ∈ C : e−τh = 4. There is a loss of rank if and only if λ0 6= −6, i.e. if and
only if h 6= ln(4)/6.

From a control point of view, if a system is spectrally controllable then there exists a
state-feedback control law with distributed delay of the form

u(t) = Kx(t) +
∫ 0

−h
G(t+ θ)x(t+ θ)dθ (I.271)

allowing to assign the number of poles to a finite value and placed arbitrarily in the complex
plane. It is important to note that the implementation of such a control law is not trivial.
Indeed, the approximation of the integral into a finite sum may destabilize the closed-loop sys-
tem (and even loose the finite spectrum assignment) this is the reason why the discretization
of the control law should be handled with care [Mondié and Michiels, 2003].

These results cannot be directly extended to systems with time-varying delays due to the
use of Laplace transform. It is explained below how it is possible to determine if a system with
time-varying delays is stabilizable using a simple Lyapunov-Krasovskii functional. However,
it is worth noting that the stabilizability, while determined using LMIs, depends on the
considered type of controller (recall that the spectral controllability considers a distributed
state-feedback control law): for finite-dimensional linear system the controllability always
refer to the existence of a state-feedback control law. On the other hand, in the time-delay
system framework, it is possible to consider several type of control law by considering a state-
feedback structure according to the dependence on delayed or instantaneous information.

Theorem I.5 System (I.264) is asymptotically stabilizable by instantaneous state-feedback
u(t) = Kx(t) if there exist a nonsingular matrix X ∈ Rn×n and symmetric matrices P,Q,R �
0 such that the LMIs




−(Y + Y )T AhY Y hmaxR̃

? −(1− µ)Q̃− R̃ 0 0
? ? −P̃ hmaxR̃

? ? ? −R̃


 ≺ 0

[
(BT )⊥ 0

0 I

]T
Ξ̃
[

(BT )⊥ 0
0 I

]
≺ 0

(I.272)

hold where (BT )⊥ is basis of the null-space of BT .
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Proof : It will be shown later, in Section (3.5-lemma 3.5.2, that (I.264) is asymptotically
stable for all delays in [0, hmax] if there exist X ∈ Rn×n and P,Q,R � 0 such that




−(X +X)T P +XTA XTAh XT hmaxR
? −P +Q−R R 0 0
? ? −(1− µ)Q−R 0 0
? ? ? −P hmaxR
? ? ? ? −R



≺ 0 (I.273)

Assume now that the control law is u(t) = Kx(t) then the closed-loop system is then given
by

ẋ(t) = (A+BK)x(t) +Ahx(t− h) (I.274)

Inject the latter expression into LMI (I.284) yields

Ξ + UTKV + V TKTU ≺ 0 (I.275)

with Ξ is (I.284), U =
[
BTXT 0 0 0 0

]
and V =

[
0 I 0 0 0

]
. Perform a

congruence transformation with respect to diag(Y, Y, Y, Y, Y ) with Y = X−1 (X is nonsingular
since from the left-upper block of LMI (I.284) we must have X +XT � 0) leads to inequality

Ξ̃ + ŨTKṼ + Ṽ TKT Ũ ≺ 0 (I.276)

where Ξ̃ =




−(Y + Y )T P̃ +AY AhY Y hmaxR̃

? −P̃ + Q̃− R̃ R 0 0
? ? −(1− µ)Q̃− R̃ 0 0
? ? ? −P̃ hmaxR̃

? ? ? ? −R̃




, UT =




B
0
0
0
0




and V =
[

0 Y 0 0 0
]

with P̃ = Y TPY , Q̃ = Y TQY and R̃ = Y TRY .
Finally applying projection lemma onto the latter inequality leads to these two underlying

LMIs: 


−(Y + Y )T AhY Y hmaxR̃

? −(1− µ)Q̃− R̃ 0 0
? ? −P̃ hmaxR̃

? ? ? −R̃


 ≺ 0

[
(BT )⊥ 0

0 I

]T
Ξ̃
[

(BT )⊥ 0
0 I

]
≺ 0

(I.277)

�
The same reasoning can be applied to the stabilization using delayed state-feedback

Theorem I.6 System (I.264) is asymptotically stabilizable by delayed state-feedback u(t) =
Kx(t− h) if there exist a nonsingular matrix X ∈ Rn×n and symmetric matrices P,Q,R � 0
such that the LMIs




−(Y + Y )T P̃ +AY Y hmaxR̃

? −P̃ + Q̃− R̃ 0 0
? ? −P̃ hmaxR̃

? ? ? −R̃


 ≺ 0

[
(BT )⊥ 0

0 I

]T
Ξ̃
[

(BT )⊥ 0
0 I

]
≺ 0

(I.278)
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hold where (BT )⊥ is basis of the null-space of BT .

Proof : The proof is identical as for the instantaneous state feedback case. �
Since the stabilizability conditions are expressed in terms of LMIs obtained from a specific

Lyapunov-Krasovskii functional, stabilizability conditions are sufficient only. More accurate
results can be obtained by choosing better functionals (i.e. more ’complete’ ones).

I.2 Spectral Observability and Detectability

Similar results are provided here on spectral observability and detectability. Spectral observ-
ability is equivalent to the existence of an observer such that the poles of the observation
error are in finite number and all located in the left-half complex plane.

The theorem on spectral observability is a direct extension of theorem (I.2) by duality.

Theorem I.7 Time-delay (I.264) is spectrally observable if and only if the following state-
ments hold:

1. rank
[
sI −A−A−shh

C

]
= n forall s ∈ {τ ∈ C : det(τI − A − A−τhh ) = 0} ∩ {τ ∈ C :

rank




C

CÃ(e−τh)
...

CÃ(e−τh)n−1


 < n}

2. rank




C

CÃ(∇)
...

CÃ(∇)n−1


 = n for all ∇ ∈ R[∇] is the ring of polynomials (weak R-observability).

Whenever a time-delay system of the form (I.264) is spectrally observability then an
observer of the form [Bhat and Koivo, 1976]

˙̂x(t) = Ax̂(t) +Ahx̂(t− h) + Φ(0)K(Cx(t)− y(t)) +Ah

∫ h

0
Φ(ξ− h)K[Cx(t− ξ)− y(t− ξ)]dξ

(I.279)
where K is the observer gain and Φ(ξ) is the matrix of eigenfunctions corresponding to
operator C : xt → Ax(t) + Ahx(t− h). As for a distributed control law, the implementation
of such an observer is difficult task. Moreover, spectral observability is the stronger result on
observability. Indeed, many systems are not spectrally observable but are observable in the
sense of the spectrum of the observation error is stable but infinite.

Since there exist a wide variety of observers we will consider here a simple extension of
the Luenberger’s observer taking the form

˙̂x(t) = Ax̂(t) +Ahx̂(t− h) +K(y − Cx̂(t) (I.280)

where K is the observer gain.
In this case, the observation error e(t) = x(t)− x̂(t) is governed by the expression

ė(t) = (A−KC)e(t) +Ahe(t− h) (I.281)



I. CONTROLLABILITY AND OBSERVABILITY OF TDS 331

which is a time-delay system itself.
In this case, we have the following theorem:

Theorem I.8 There exists an observer of the form (I.280) if there exist X, P = P T , Q =
QT , R = RT � 0 such that the LMIs




−P +Q−R R 0 0
? −(1− µ)Q−R 0 0
? ? −P hmaxR
? ? ? −R


 ≺ 0 (I.282)

ZT




−(X +X)T P +XT (A−KC) XTAh XT hmaxR
? −P +Q−R R 0 0
? ? −(1− µ)Q−R 0 0
? ? ? −P hmaxR
? ? ? ? −R



Z ≺ 0 (I.283)

hold with Z =




I 0 0 0 0 0
0 Ker[C] 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I




.

Proof : It will be shown later in Section (3.5-lemma 3.5.2, that (I.264) is asymptotically
stable for all delays in [0, hmax] if there exist X ∈ Rn×n and P,Q,R � 0 such that




−(X +X)T P +XTA XTAh XT hmaxR
? −P +Q−R R 0 0
? ? −(1− µ)Q−R 0 0
? ? ? −P hmaxR
? ? ? ? −R



≺ 0 (I.284)

Then by substituting the expression of the estimation error (I.281) into the latter LMI,
we get




−(X +X)T P +XT (A−KC) XTAh XT hmaxR
? −P +Q−R R 0 0
? ? −(1− µ)Q−R 0 0
? ? ? −P hmaxR
? ? ? ? −R



≺ 0 (I.285)
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The latter LMI can be rewritten as




−(X +X)T P +XTA XTAh XT hmaxR
? −P +Q−R R 0 0
? ? −(1− µ)Q−R 0 0
? ? ? −P hmaxR
? ? ? ? −R




+




−I
0
0
0
0




(XTK)
[

0 C 0 0 0 0
]

+ (?)T ≺ 0

(I.286)

In virtue of the projection lemma, the existence of K is equivalent to the feasibility of the
two underlying LMIs:




−P +Q−R R 0 0
? −(1− µ)Q−R 0 0
? ? −P hmaxR
? ? ? −R


 ≺ 0 (I.287)

ZT




−(X +X)T P +XT (A−KC) XTAh XT hmaxR
? −P +Q−R R 0 0
? ? −(1− µ)Q−R 0 0
? ? ? −P hmaxR
? ? ? ? −R



Z ≺ 0 (I.288)

with Z =




I 0 0 0 0 0
0 Ker[C] 0 0 0 0
0 0 I 0 0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I




�

J Complements on Observation and Filtering of LPV
Time-Delay Systems

This appendix aims to providing extra results on observation and filtering of (uncertain) LPV
time-delay systems. These results complete the contents of Section 4.

J.1 Observation of unperturbed LPV Time-Delay Systems

This section provides the extension of Theorem 4.1.5 in the case of a discretized Lyapunov-
Krasovskii functional.
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J.1.1 Observer with exact delay value - discretized Lyapunov-Krasovskii
functional case

Since the Lyapunov-Krasovskii functional used in Section 4.1.1 is rather simple, it may lead
to conservative results. However, the obtained results are encouraging and motivates the
results of this section in which the functional in use is a discretized version of this func-
tional. We have the following result when using observer expression of Section 4.1.1 with the
stability/performance result obtained from the use of the discretized Lyapunov-Krasovskii
functional introduced in Section 3.6. The proof, residing in the application of Lemma 3.6.4
instead of Lemma 3.5.2, is very similar and is hence omitted.

Theorem J.1 There exists a parameter dependent observer of the form (4.6) for system (4.1)
such that theorem 4.1.2 for all h ∈H ◦

1 is satisfied if there exist a continuously differentiable
matrix function P : Uρ → Sr++, a matrix function Z : Uρ → Rr×(2r+3m), constant matrices
Qi, Ri ∈ Sr++, i = 0, . . . , N − 1, X ∈ Rr×r, H̄ ∈ Rr×m and a positive scalar γ > 0 such that
the following matrix inequality




−XH U12(ρ) 0 XT h̄1R0 . . . h̄1RN−1

? U22(ρ, ν) U23(ρ) 0 0 . . . 0
? ? −γI 0 0 . . . 0
? ? ? −P (ρ) −h̄1R0 . . . −h̄1RN−1

? ? ? ? −diag
i
Ri



≺ 0 (J.289)

holds for all (ρ, ν) ∈ Uρ × Uν and where

U22 =




U ′11 R0 0 0 . . . 0 0
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 −γI




(J.290)

U ′11 = ∂ρP (ρ)ρ̇− P (ρ) +Q0 −R0

N
(1)
i = −(1− iµN )Qi−1 + (1 + iµN )Qi −Ri−1 −Ri, i = 1, . . . , N − 1

N (2) = −(1− µ)QN−1 −RN−1

U12(ρ) =
[
P (ρ) +XTΘ(ρ)− L̄(ρ)Ξ(ρ) 0 . . . 0 XTΨ(ρ)− L̄(ρ)Ω(ρ) (XTT − H̄C)E

]

U23(ρ) =
[
Ir 0 . . . 0 0 0

]T

h̄ = hmax/N

µN = µ/N

Moreover, the gain is given by L(ρ) = X(ρ)−T L̄(ρ) and we have ||e||L2 < γ||w||L2
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J.2 Filtering of Observation of unperturbed LPV Time-Delay Systems

In order to filter or estimate internal signals and output signals of a system, it is also possible
to design a filter. The main difference between a filter and an observer is that in the observer
it is generally sought that the dynamical model of the observation error is independent of the
system state (at least in the ideal case). Moreover, in the control framework, it is generally
difficult to elaborate a control law from a filter while using an observer it is not. However,
the design of a filter is generally more simple than an observer for different reasons.

The first one in the smaller number of computations by hand that are needed to obtain
the extended system. In the observer design, solutions of algebraic matrix equations have to
be expressed while for the filter design, no matrices need to be computed.

The second one is that the structure of the extended system containing both system state
and filter state allows for a genuine non conservative change of variables [Tuan et al., 2001,
2003].

The third and last reason, is the wide adaptability of filters to any types of time-delay
systems. Indeed, in the observer approach presented in Section 4.1, the output matrix C
must be parameter independent for theoretical reason, it is difficult to consider a disturbance
on the measured output and the delayed state must not affect the measurements. This
restricts considerably the field of action of the approach by imposing a strong structure for
the measurement process.

Among the types of filters it is possible to isolate two main classes, as for the observers,
according to the dependence or not of the filter on the delay. Filters involving a delayed-state
are called filters with memory while others are called memoryless. Both cases will be detailed
in what follows.

In the filtering section, the following general LPV time-delay system will be considered:

ẋ(t) = A(ρ)x(t) +Ah(ρ)x(t− h(t)) + E(ρ)w(t)
z(t) = C(ρ)x(t) + Ch(ρ)x(t− h(t)) + F (ρ)w(t)
y(t) = Cy(ρ)x(t) + Cyh(ρ)x(t− h(t)) + Fy(ρ)w(t)

(J.291)

where x ∈ Rn, y ∈ Rm, w ∈ Rq, z ∈ Rr are respectively the system state, the observer state,
the system measurements, the system control input, the system exogenous inputs, the signal
to be estimated and its estimate. The time-varying delay is assumed to belong to the set H ◦

1 .
The general filter is given by

ẋF (t) = AF (ρ)xF (t) +AFh(ρ)xFh(t− d(t)) +BF (ρ)y(t)
zF (t) = CF (ρ)xF (t) + CFh(ρ)xFh(t− d(t)) +DF (ρ)y(t)

(J.292)

where xF ∈ Rk and zF ∈ Rt. When k = n the filter is said to be of full-order while when
k < n, the filter is said to be of reduced-order. Moreover, it may happen that the delay used
in the filter is not identical to the real delay involved in the dynamical model of the system,
this motivates the use of the delay d(t) in the filter model. If the filter involves a delay part,
it is called filter with memory while if it does not, it is called memoryless filter.

Problem J.2 Find all matrices AF (ρ), BF (ρ), CF (ρ), FF (ρ) (with AFh(ρ) and CFh(ρ) in the
memory case) which minimizes the impact of the disturbances over the error e(t) = z(t)−zF (t)
in a L2 framework, that is, we aim at minimizing γ > 0 such that

||e||L2 ≤ γ||w||L2

holds.
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J.2.1 Design of a filter with memory with exact delay-value

The more general filter is the ’complete’ filter involving information on the delay through a
delayed part in its model and we suppose here that d(t) = h(t) all the time. In this case the
extended system, which is the combination of the system and the observer, is given by:




ẋ(t)
ẋF (t)
e(t)


 =

[ A(ρ)
C(ρ)

] [
x(t)
xF (t)

]
+
[ Ah(ρ)
Ch(ρ)

] [
x(t− h(t))
xF (t− h(t))

]
+
[ E(ρ)
F(ρ)

]
w(t) (J.293)

where

A(ρ) =
[

A(ρ) 0
BF (ρ)Cy(ρ) AF (ρ)

]

C(ρ) =
[
C(ρ)−DF (ρ)Cy(ρ) −CF (ρ)

]

Ah(ρ) =
[

AF (ρ) 0
BF (ρ)Cyh(ρ) AFh(ρ)

]

Ch(ρ) =
[
Ch(ρ)−DF (ρ)Cyh(ρ) −CFh(ρ)

]

E(ρ) =
[

E(ρ)
BF (ρ)Fy(ρ)

]

F(ρ) =
[
−DF (ρ)Fy(ρ)

]

From this extended model, it is possible to derive sufficient conditions for the existence of
a suitable filters. To obtain them, it suffices to substitute the extended system expression into
the LMI conditions of Lemma 3.5.2 which has been obtained by using a simple Lyapunov-
Krasovskii functional.

Theorem J.3 There exists a full-order filter of the form (J.292) with d(t) = h(t), h(t) ∈H ◦
1

if there exists a continuously differentiable matrix function P̃ : Uρ → S2n
++, symmetric matrices

Q̃, R̃ ∈ S2n
++, X̂ ∈ R2n×2n, matrix functions ÃF , ÃFh : Uρ → Rn×n, B̃F : Uρ → Rn×m,

C̃F , C̃Fh : Uρ → Rt×n, D̃F : Uρ → Rn×m and a scalar γ > 0 such that the LMI




−X̂H P̃ (ρ) + Ã(ρ) Ãh(ρ) Ẽ(ρ) 0 X̂T hmaxR̃

? Ψ̃22(ρ, ν) R 0 C̃(ρ)T 0 0
? ? −(1− µ)Q̃− R̃ 0 C̃h(ρ)T 0 0
? ? ? −γIq F(ρ)T 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃




≺ 0 (J.294)
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holds for all ρ ∈ Uρ with

Ψ22(ρ, ν) = ∂ρP̃ (ρ)ν − P̃ (ρ) + Q̃− R̃
P̃ (ρ) = X̃TP (ρ)X̃
Q̃ = X̃TQX̃

R̃ = X̃TRX̃

X̂ =
[
X̂1 X̂2

X̂3 X̂3

]

Ã(ρ) =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) =
[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)

]

Ẽ(ρ) =



X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)




C̃(ρ)T =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]

C̃h(ρ)T =
[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

−C̃Fh(ρ)

]

X̂3 = UTΣU (using SVD see Appendix A.6)

Moreover the filter matrices are computed using

[
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)U−1Σ−1 U−T ÃFh(ρ)U−1Σ−1 U−T B̃F (ρ)
C̃F (ρ)U−1Σ−1 C̃Fh(ρ)U−1Σ−1 D̃F (ρ)

]

and we have ||e||L2 ≤ γ||w||L2.

Proof : Substituting the model (J.293) into LMI (3.95) we get




−XH P (ρ) +XTA(ρ) XTAh(ρ) XTE(ρ) 0 XT hmaxR
? Ψ22(ρ, ν) R 0 C(ρ)T 0 0
? ? −(1− µ)Q−R 0 Ch(ρ)T 0 0
? ? ? −γIq F(ρ)T 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R




≺ 0

(J.295)
with

Ψ22(ρ, ν) = ∂ρP (ρ)ν − P (ρ) +Q−R (J.296)



J. COMPLEMENTS ON OBSERVATION AND FILTERING OF LPV TIME-DELAY
SYSTEMS 337

Define the matrix X̃ =
[
In 0
0 X−1

4 X3

]
then we have

Ã(ρ) = X̃TXTA(ρ)X̃ =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) = X̃TXTAh(ρ)X̃ =
[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)

]

Ẽ(ρ) = X̃TXTE(ρ)X̃ =



X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)




C̃(ρ)T = X̃TC(ρ) =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]

C̃h(ρ)T = X̃TCh(ρ) =
[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

−C̃Fh(ρ)

]

whereX̂ = X̃TXX̃ =
[
X̂1 X̂2

X̂3 X̂3

]
=
[

X1 X2X
−1
4 X3

XT
3 X

−1
4 X3 XT

3 X
−1
4 X3

]

ÃF (ρ) = XT
3 AF (ρ)X−1

4 X3

ÃFh(ρ) = XT
3 AFh(ρ)X−1

4 X3

B̃F (ρ) = XT
3 BF (ρ)

C̃F (ρ) = CF (ρ)X−1
4 X3

C̃Fh(ρ) = CFh(ρ)X−1
4 X3

Then perform a congruence transformation on (J.295) with respect to diag(X̃, X̃, X̃, Iq, Ir, X̃, X̃)
we get LMI




−X̂H P̃ (ρ) + Ã(ρ) Ãh(ρ) Ẽ(ρ) 0 X̂T hmaxR̃

? Ψ̃22(ρ, ν) R 0 C̃(ρ)T 0 0
? ? −(1− µ)Q̃− R̃ 0 C̃h(ρ)T 0 0
? ? ? −γIq F(ρ)T 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃
? ? ? ? ? ? −R̃




≺ 0

with
Ψ̃22(ρ, ν) = ∂ρP̃ (ρ)ν − P̃ (ρ) + Q̃− R̃
P̃ (ρ) = X̃TP (ρ)X̃
Q̃ = X̃TQX̃

R̃ = X̃TRX̃

which is exactly (J.294). Now let us focus on the computation of the filter matrices. Note
that

[
ÃF (ρ) ÃFh(ρ) B̃F (ρ)
C̃F (ρ) C̃Fh(ρ) D̃F (ρ)

]
=
[
XT

3 0
0 I

] [
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]

X−1

4 X3 0 0
0 X−1

4 X3 0
0 0 I




(J.297)
Thus it suffices to construct back the matrix X in order to compute the observer gain. A
singular values decomposition (SVD, see Appendix A.6) on X̂3 allows to compute the matrices
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X3 and X4 which are necessary to construct the filter matrices. Indeed, we have X̂3 = UTΣU
and hence

X4 = Σ−1

X3 = U

and finally we have

[
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
UT 0
0 I

]−1 [
ÃF (ρ) ÃFh(ρ) B̃F (ρ)
C̃F (ρ) C̃Fh(ρ) D̃F (ρ)

]


ΣU 0 0
0 ΣU 0
0 0 I



−1

=
[
U−T ÃF (ρ)U−1Σ−1 U−T ÃFh(ρ)U−1Σ−1 U−T B̃F (ρ)
C̃F (ρ)U−1Σ−1 C̃Fh(ρ)U−1Σ−1 D̃F (ρ)

]

�
In order to improve the latter result, we give here its extension using a discretized

Lyapunov-Krasovskii functional. The following result is obtained using the same method
as for Theorem J.3 but using lemma 3.6.4.

Theorem J.4 There exists a full-order filter of the form (J.292) with d(t) = h(t), h(t) ∈H ◦
1

if there exists a continuously differentiable matrix function P : Uρ → S2n
++, symmetric matrices

Q̃i, R̃i ∈ S2n
++, i = 0, . . . , N − 1, X̂ ∈ R2n×2n, matrix functions ÃF , ÃFh : Uρ → Rn×n,

B̃F : Uρ → Rn×m, C̃F , C̃Fh : Uρ → Rt×n, D̃F : Uρ → Rn×m and a scalar γ > 0 such that the
LMI




−X̂H Ũ12(ρ) 0 X̂T h̄1R̃0 . . . h̄1R̃N−1

? Ũ22(ρ, ν) Ũ23(ρ) 0 0 . . . 0
? ? −γI 0 0 . . . 0
? ? ? −P̃ (ρ) −h̄1R̃0 . . . −h̄1R̃N−1

? ? ? ? −diag
i
R̃i



≺ 0 (J.298)

holds for all (ρ, ν) ∈ Uρ × Uν and where

U22 =




U ′11 R̃0 0 0 . . . 0 0
? Ñ

(1)
1 R̃1 0 . . . 0 0

? ? Ñ
(1)
2 R̃2 0 0

. . . . . .
...

...
. . . R̃N−1 0

Ñ (2) 0
? ? ? . . . 0 0 −γI




w (J.299)
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Ũ ′11 = ∂ρP̃ (ρ)ρ̇− P̃ (ρ) + Q̃0 − R̃0

Ñ
(1)
i = −(1− iµN )Q̃i−1 + (1 + iµN )Q̃i − R̃i−1 − R̃i

Ñ (2) = −(1− µ)Q̃N−1 − R̃N−1

Ũ12(ρ) =
[
P (ρ) + Ã(ρ) 0 0 Ãh(ρ) . . . 0 Ẽ(ρ)

]

Ũ23(ρ) =
[
C̃(ρ) 0 . . . 0 C̃h(ρ) F(ρ)

]T

X̂ =
[
X̂1 X̂2

X̂3 X̂3

]

Ã(ρ) =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) =
[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)

]

Ẽ(ρ) =



X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)




C̃(ρ)T =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]

C̃h(ρ)T =
[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

−C̃Fh(ρ)

]

X̂3 = UTΣU (SVD)

Moreover the filter matrices are computed using

[
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)U−1Σ−1 U−T ÃFh(ρ)U−1Σ−1 U−T B̃F (ρ)
C̃F (ρ)U−1Σ−1 C̃Fh(ρ)U−1Σ−1 D̃F (ρ)

]

and we have ||e||L2 ≤ γ||w||L2.

J.2.2 Design of a filter with memory with approximate delay-value

It is of interest to deal with a filter involving a delay which is different from the plant, that
is d(t) 6= h(t) most of the time. According to this assumption, the extended system takes the
following form




ẋ(t)
ẋF (t)
e(t)


 =

[ A(ρ)
C(ρ)

] [
x(t)
xF (t)

]
+
[ Ah(ρ)
Ch(ρ)

] [
x(t− h(t))
xF (t− h(t))

]

+
[ Ad(ρ)
Cd(ρ)

] [
x(t− d(t))
xF (t− d(t))

]
+
[ E(ρ)
F(ρ)

]
w(t)

(J.300)
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where

A(ρ) =
[

A(ρ) 0
BF (ρ)Cy(ρ) AF (ρ)

]

C(ρ) =
[
C(ρ)− FF (ρ)Cy(ρ) −CF (ρ)

]

Ah(ρ) =
[

Ah(ρ) 0
BF (ρ)Cyh(ρ) 0

]

Ch(ρ) =
[
Ch(ρ)− FF (ρ)Cyh(ρ) 0

]

Ad(ρ) =
[

0 0
0 AFh(ρ)

]

Cd(ρ) =
[

0 −CFh(ρ)
]

E(ρ) =
[

E(ρ)
BF (ρ)Fy(ρ)

]

F(ρ) =
[
−FF (ρ)Fy(ρ)

]

The following result is provided through the use of Theorem 3.7.2 which is the relaxation
of 3.7.1 and considers the stability and L2 performances of systems of the form (J.300).

Theorem J.5 There exists a filter of the form (J.300) for system (J.291) with d(t) = h(t),
h(t) ∈ H ◦

1 if there exists a continuously differentiable matrix function P̃ : Uρ → S2n
++, sym-

metric matrices Q̃1, Q̃2, R̃1, R̃2 ∈ S2n
++, X̂ ∈ R2n×2n, matrix functions ÃF , ÃFh : Uρ → Rn×n,

B̃F : Uρ → Rn×m, C̃F , C̃Fh : Uρ → Rt×n, D̃F : Uρ → Rn×m and a scalar γ > 0 such that the
LMIs




−X̂H P̃ (ρ) + Ã(ρ) Ãh(ρ) + Ãd(ρ) Ẽ(ρ) 0 X̂(ρ)T hmaxR̃1 R̃2

? Θ̃11(ρ, ν) R̃1 0 C̃(ρ)T 0 0 0
? ? Θ̃22 0 C̃h(ρ)T + C̃d(ρ)T 0 0 0
? ? ? −γI F(ρ)T 0 0 0
? ? ? ? −γI 0 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃1 −R̃2

? ? ? ? ? ? −R̃1 0

? ? ? ? ? ? ? −R̃2

2δ




≺ 0

(J.301)
and

[
Π̃11(ρ, ν) Π̃12(ρ)

? Π̃22(ρ)

]
≺ 0 (J.302)
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hold for all (ρ, ν) ∈ Uρ × Uν and where

Π̃11(ρ, ν) =




−X̂H P̃ (ρ) + Ã Ãh(ρ) Ãd(ρ) Ẽ(ρ)
? Θ̃11(ρ, ν) R̃1 0 0
? ? Ψ̃22 (1− µ)R̃2/δ 0
? ? ? Ψ̃33 0
? ? ? ? −γI




Π̃12(ρ) =




0 X̂T hmaxR̃1 R̃2

C̃(ρ)T 0 0 0
C̃h(ρ)T 0 0 0
C̃d(ρ)T 0 0 0
F(ρ)T 0 0 0




Π̃22(ρ) =




−γI 0 0 0
? −P̃ (ρ) −hmaxR̃1 −R̃2

? ? −R̃1 0

? ? ? −R̃2

2δ




Θ̃11(ρ, ν) = −P̃ (ρ) + Q̃1 + Q̃2 +
N∑

i=1

∂P̃

∂ρi
νi − R̃1

Θ̃22 = −(1− µ)(Q̃1 + Q̃2)− R̃1

Ψ̃22 = −(1− µ)(Q̃1 + R̃2/δ)− R̃1

Ψ̃33 = −(1− µc)Q̃2 − (1− µ)R̃2/δ

X̂ =
[
X̂1 X̂2

X̂3 X̂3

]

Ã(ρ) =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) =
[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) 0
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) 0

]

Ãd(ρ) =
[

0 ÃFh(ρ)
0 ÃFh(ρ)

]

Ẽ(ρ) =



X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)




C̃(ρ)T =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]

C̃h(ρ)T =
[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

0

]

C̃d(ρ)T =
[

0
−C̃Fh(ρ)

]

X̂3 = UTΣU (SVD)
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Moreover the filter matrices are computed using

[
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)U−1Σ−1 U−T ÃFh(ρ)U−1Σ−1 U−T B̃F (ρ)
C̃F (ρ)U−1Σ−1 C̃Fh(ρ)U−1Σ−1 D̃F (ρ)

]

and we have ||e||L2 ≤ γ||w||L2.

J.2.3 Design of memoryless filter

A memoryless filter is a filter embedding no information on the delay involved in the system.
Even if such a filter leads to worse performances than the filter with memory, it is of interest
whenever no information on the current delay value is available. A memoryless filter can be
obtained by setting AFh(·) = 0 and CFh(·) = 0 in filter model (J.293).

In this case, the extended system writes:




ẋ(t)
ẋF (t)
e(t)


 =

[ A(ρ)
C(ρ)

] [
x(t)
xF (t)

]
+
[ Ah(ρ)
Ch(ρ)

] [
x(t− h(t))
xF (t− h(t))

]
+
[ E(ρ)
F(ρ)

]
w(t) (J.303)

where

A(ρ) =
[

A(ρ) 0
BF (ρ)Cy(ρ) AF (ρ)

]

C(ρ) =
[
C(ρ)− FF (ρ)Cy(ρ) −CF (ρ)

]

Ah(ρ) =
[

Ah(ρ)
BF (ρ)Cyh

]
Z

Ch(ρ) = [Ch(ρ)− FF (ρ)Cyh(ρ)]Z

E(ρ) =
[

E(ρ)
BF (ρ)Fy(ρ)

]

F(ρ) =
[
−FF (ρ)Fy(ρ)

]

Z =
[
In 0

]

Theorem J.6




−X̂H P̃ (ρ) + Ã(ρ) Ãh(ρ) Ẽ(ρ) 0 X̂T hmaxZ
TR

? Ψ̃′22(ρ, ν) R 0 C̃(ρ)T 0 0
? ? −(1− µ)Q−R 0 C̃h(ρ)T 0 0
? ? ? −γIm F(ρ)T 0 0
? ? ? ? −γIp 0 0
? ? ? ? ? −P̃ (ρ) −hmaxZTR
? ? ? ? ? ? −R




≺ 0

(J.304)
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holds for all (ρ, ν) ∈ Uρ × Uν where

Ψ̃′22(ρ, ν) = ∂ρP̃ (ρ)ν − P̃ (ρ) + ZT (Q(ρ)−R)Z

X̂ =
[
X̂1 X̂2

X̂3 X̂3

]

Ã(ρ) =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) =
[
X̂T

1 Ah + B̃F (ρ)Cyh(ρ)
X̂T

2 Ah + B̃F (ρ)Cyh(ρ)

]

Ẽ(ρ) =



X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)




C̃(ρ)T =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]

C̃h(ρ)T = Ch(ρ)T − Chy(ρ)TDF (ρ)T

X̂3 = UTΣU (SVD)

Moreover the filter matrices are computed using
[
AF (ρ) BF (ρ)
CF (ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)U−1Σ−1 U−T B̃F (ρ)
C̃F (ρ)U−1Σ−1 D̃F (ρ)

]

and we have ||e||L2 ≤ γ||w||L2.

Proof : Due to the structure of matrices Ah and Ch, this suggests that lemma 3.5.4 would
be appropriate for this type of problem as shown in [Zhang and Han, 2008]. This lemma is
the immediate LMI result obtained from the Lyapunov-Krasovskii functional. Actually, due
to the specific structure of matrices acting on the delayed state, no multiple coupling and
congruence transformations [Tuan et al., 2001, 2003, Zhang and Han, 2008] can be directly
applied without creating nonlinear terms. Since the congruence transformation is performed
using blocks of the P matrix involving products and inverse of the, it cannot be applied on
time-varying matrices. This is the reason why lemma 3.5.5, which is the relaxed version of
Lemma 3.5.4, should be considered instead.

The remaining of the proof is similar to proofs of previous results, except that the congru-
ence transformation is performed here with respect to the matrix

diag(X̃, X̃, X̃, Im, Ip, X̃, In)

and we have

Ãh = X̃Ah
[

Ah(ρ)
−BF (ρ)Cyh(ρ)

]
=

[
X̂T

1 Ah + B̃F (ρ)Cyh(ρ)
X̂T

2 Ah + B̃F (ρ)Cyh(ρ)

]

Other matrices remain unchanged. �

J.3 Observation of uncertain LPV Time-Delay Systems

Although observation and filtering of certain systems is an interesting and still an open
problem, it is more relevant, from a practical point of view, to consider the wide class of
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uncertain LPV time-delay systems. Indeed, systems are generally not known completely
since some modeling errors, nonlinear terms (and so on. . . ) remain and are neglected. The
robust observation and filtering problems aim at providing conditions for which an observer
or filter exist, achieve some performances even in presence of such uncertainties. This section
is devoted to such a problem. According to the type of process to be designed, the class of
systems under consideration differs and hence specific types of problems will be introduced
at the beginning of each section.

In this section the following class of uncertain LPV time-delay systems is considered

ẋ(t) = (A(ρ) + ∆A(ρ, t))x(t) + (Ah(ρ) + ∆Ah(ρ, t))x(t− h(t))
+(E(ρ) + ∆E(ρ, t))w(t)

y(t) = Cy(t)
z(t) = Tx(t)

(J.305)

for which the the following observer aims to be designed

ξ̇(t) = M0(ρ)ξ(t) +Mh(ρ)ξ(t− d(t)) +N0(ρ)y(t) +Nh(ρ)y(t− h(t)) + S(ρ)u(t)
ẑ(t) = ξ(t) +Hy(t)

(J.306)
where x ∈ Rn, ξ ∈ Rr, y ∈ Rm, u ∈ Rp, w ∈ Rq, z ∈ Rr and ẑ ∈ Rr are respectively
the system state, the observer state, the system measurements, the system control input, the
system exogenous inputs, the signal to be estimated and its estimate. The time-varying delay
is assumed to belong to the set H ◦

1 .
The uncertain terms are assumed to obey the following relations

[
∆A(ρ, t) ∆Ah(ρ, t) ∆E(ρ, t)

]
= G(ρ)∆(t)

[
HA(ρ) HAh

(ρ) HE(ρ)
]

(J.307)

where ∆(t)T∆(t) � I for all t ≥ 0.

J.3.1 Robust observer with exact delay value - simple Lyapunov-Krasovskii
functional

The key idea for designing such an observer for uncertain systems is roughly the same as for
the certain system case. The observer matrices are sought in order to compensate known
matrices of the systems acting on the state of the system. The main difference compared to
the certain system case is the presence of uncertain terms that will remain in the equation
of the dynamical model of the observation error. That is we obtain the following extended
model:

[
ẋ(t)
ė(t)

]
= (A(ρ) + ∆(t)A(ρ))

[
x(t)
e(t)

]
+ (Ah(ρ) + ∆(t)Ah(ρ))

[
x(t− h(t))
e(t− h(t))

]

+(E(ρ) + ∆(t)E(ρ))w(t)

zobs(t) = I
[
x(t)
e(t)

] (J.308)
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with

A(ρ) =
[
A(ρ) 0

0 M0(ρ)

]

∆A(ρ) =
[

∆A(ρ) 0
(T −HC)∆A(ρ) 0

]
=
[

G(ρ)
(T −HC)G(ρ)

]
∆(t)

[
HA(ρ) 0

]

Ah(ρ) =
[
Ah(ρ) 0

0 Mh(ρ)

]

∆Ah(ρ) =
[

∆Ah(ρ) 0
(T −HC)∆Ah(ρ) 0

]
=
[

G(ρ)
(T −HC)G(ρ)

]
∆(t)

[
HAh

(ρ) 0
]

E(ρ) =
[

E(ρ)
(T −HC)E(ρ))

]

∆E(ρ) =
[

∆E(ρ)
(T −HC)∆E(ρ)

]
=
[

G(ρ)
(T −HC)G(ρ)

]
∆(t)HE(ρ)

I =
[

0 Ir
]

(J.309)
and under conditions

(T −HC)A(ρ)−M0(ρ)(T −HC)−N0(ρ)C = 0
(T −HC)Ah(ρ)−Mh(ρ)(T −HC)−Nh(ρ)C = 0

The conditions of existence of such an observer are the same as for the observer designed
in Section 4.1.1 and hence intermediate results will not be recalled here. The only condition
differing from observer of Section 4.1.1, is the LMI condition which is given in the following
theorem:

Theorem J.7 There exists a robust observer of the form (J.306) if there exist a continuously
differentiable matrix P : Uρ → Sn+t

++ , matrix functions X1 : Uρ → Rn×n, X2 : Uρ → Rt×n and
X3 : Uρ → Rt×t, Z : Uρ → Rr×2r+3m, constant matrices Q,R ∈ Sn+t

++ , H̄ ∈ Rr×m and scalars
γ, ε > 0 such that the LMI

[
M̃(ρ, ν) + εH(ρ)TH(ρ) G̃(ρ)T

? −εI

]
≺ 0
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holds for all (ρ, ν) ∈ Uρ × Uν where

M̃(ρ, ν) =




−X(ρ)H P (ρ) + Ã(ρ) Ãh(ρ) Ẽ(ρ) 0 X(ρ)T hmaxR
? U22(ρ, ν) R 0 IT 0
? ? U33 0 0 0
? ? ? −γIq 0 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R




G(ρ)T =




X1(ρ)TG(ρ)
X1(ρ)TG(ρ) + (X3(ρ)TT − H̄C)G(ρ)

0
0
0
0
0
0
0
0
0
0




H(ρ)T =




0
0

HA(ρ)T

0
HAh

(ρ)T

0
HE(ρ)T

0
0
0
0
0




X(ρ) =
[
X1(ρ) X2(ρ)

0 X3(ρ)

]

Ã(ρ) = X(ρ)TA(ρ) =
[
X1(ρ)TA(ρ) 0
X2(ρ)TA(ρ) X3(ρ)TΘ(ρ)− L̄(ρ)Ξ(ρ)

]

Ãh(ρ) = X(ρ)TAh(ρ) =
[
X1(ρ)TAh(ρ) 0
X2(ρ)TAh(ρ) X3(ρ)TΥ(ρ)− L̄(ρ)Ω(ρ)

]

Ẽ(ρ) = X(ρ)TE(ρ) =
[

X1(ρ)TE(ρ)
X2(ρ)TE(ρ) + (X3(ρ)TT T − CT H̄T )E(ρ)

]

L̄(ρ) = (X3(ρ)TΦ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+)
U22(ρ, ν) = −P (ρ) +Q−R+ ν∂ρP (ρ)
U33 = −(1− µ)Q−R

and matrices Φ(ρ),Ψ(ρ),Ω(ρ),Ξ(ρ),Υ(ρ),Θ(ρ) are defined in Lemma 4.1.4.
Moreover, the generalized observer matrix gain L(ρ) is given by

L(ρ) = X−T3 L̄(ρ) (J.310)

and the extended system satisfies
||e||L2 ≤ γ||w||L2

for all ∆(t) such that ∆(t)T∆(t) � I.

Proof : By substitution of the matrices of system (J.308) into LMI (3.95) of Lemma 3.5.2,
which is a relaxed version of stability/performance lemma developed using a simple Lyapunov-

Krasovskii functional, and choosing X =
[
X1(ρ) X2(ρ)

0 X3(ρ)

]
, we obtain the following matrix

inequality
M(ρ, ν) + G(ρ)T∆(t)H(ρ) +H(ρ)T∆(t)G(ρ) ≺ 0 (J.311)
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where

M(ρ, ν) =




−(X +XT ) P (ρ) +X(ρ)TA(ρ) X(ρ)TAh(ρ) X(ρ)TE(ρ) 0 X(ρ)T hmaxR
? U22(ρ, ν) R 0 IT 0
? ? U33 0 0 0
? ? ? −γIq 0 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxR
? ? ? ? ? ? −R




G(ρ)T =




X1(ρ)TG(ρ)
X1(ρ)TG(ρ) +X3(ρ)T (T −HC)G(ρ)

0
0
0
0
0
0
0
0
0
0




H(ρ)T =




0
0

HA(ρ)T

0
HAh

(ρ)T

0
HE(ρ)T

0
0
0
0
0




and
U22(ρ, ν) = −P (ρ) +Q−R+ ν∂ρP (ρ)
U33 = −(1− µ)Q−R

In virtue of the bounding lemma (see Appendix E.14), inequality (J.311) is feasible if and
only if there exists ε > 0 such that

[
M(ρ) + εH(ρ)TH(ρ) G(ρ)T

? −εI

]
≺ 0 (J.312)

holds.
The uncertainties have been removed from the conditions, it suffices now to linearize the

inequality in order to get a SDP problem. According to Lemma 4.1.4, the matrices M0(ρ),
Mh(ρ) and H can be written in the following form

M0(ρ) = Θ(ρ)− L(ρ)Ξ(ρ)
Mh(ρ) = Υ(ρ)− L(ρ)Ω(ρ)
H(ρ) = Φ(ρ)− L(ρ)Ψ(ρ)
T −HC = T − Φ(ρ)C + L(ρ)Ψ(ρ)C

where L(ρ) is an uncertain matrix to be designed.
Through the change of variable L̄ = XT

3 L(ρ) the condition is linearized and thus becomes
a LMI. On the other hand, since H is a constant matrix (see proof of Lemma 4.1.5) then
L̄(ρ) must be defined using the equality

L̄(ρ) = (XTΦ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+)

which concludes the proof. �
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J.3.2 Robust observer with exact delay value - discretized
Lyapunov-Krasovskii functional

Due to the form of the Lyapunov-Krasovskii functional, even if the latter result yields inter-
esting observers, the design LMI remains conservative. This motivates the use of a discretized
version of such a functional described in Section 3.6, Lemma 3.6.4. Since the proof is similar
to the proof of Theorem J.7 it will be omitted.

Theorem J.8 There exists a parameter dependent observer of the form (4.3) such that theo-
rem 4.1.2 for all h ∈H ◦

1 is satisfied if there exist a continuously differentiable matrix function
P : Uρ → Sr++, matrix functions Z : Uρ → Rr×(2r+3m), X1 : Uρ → Rn×n, X2 : Uρ → Rt×n
and X3 : Uρ → Rt×t, constant matrices Qi, Ri ∈ Sr++, H̄ ∈ Rr×m and positive scalars γ, ε > 0
such that the following matrix inequality

[
M̃(ρ, ν) + εH(ρ)TH(ρ) G̃(ρ)T

? −εI

]
≺ 0 (J.313)

where

M̃(ρ, ν) =




−XH U12(ρ) 0 XT h̄1R0 . . . h̄1RN−1

? U22(ρ, ν) U23(ρ) 0 0 . . . 0
? ? −γI 0 0 . . . 0
? ? ? −P (ρ) −h̄1R0 . . . −h̄1RN−1

? ? ? ? −diag
i
Ri



≺ 0

(J.314)
holds for all (ρ, ν) ∈ Uρ × Uν and where

U22 =




U ′11 R0 0 0 . . . 0 0
? N

(1)
1 R1 0 . . . 0 0

? ? N
(1)
2 R2 0 0

. . . . . .
...

...
. . . RN−1 0

N (2) 0
? ? ? . . . 0 0 −γI




(J.315)
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G̃(ρ)T =




X1(ρ)TG(ρ)
X1(ρ)TG(ρ) + (X3(ρ)TT − H̄C)G(ρ)

0
0
0
0
...
0
0
0
0
0
0
0
...
0




H̃(ρ)T =




0
0

HA(ρ)T

0
0
0
...

HAh
(ρ)T

0
HE(ρ)

0
0
0
0
...
0




U ′11 = ∂ρP (ρ)ν − P (ρ) +Q0 −R0

N
(1)
i = −(1− iµN )Qi−1 + (1 + iµN )Qi −Ri−1 −Ri

N (2) = −(1− µ)QN−1 −RN−1

U12(ρ) =
[
P (ρ) + Ã(ρ) 0 . . . 0 Ãh(ρ) Ẽ(ρ)

]

U23(ρ) =
[
Ir 0 . . . 0 0 0

]T

h̄ = hmax/N

µN = µ/N

Ã(ρ) =
[
X1(ρ)TA(ρ) 0
X2(ρ)TA(ρ) X3(ρ)TΘ(ρ)− L̄(ρ)Ξ(ρ)

]

Ãh(ρ) =
[
X1(ρ)TAh(ρ) 0
X2(ρ)TAh(ρ) X3(ρ)TΥ(ρ)− L̄(ρ)Ω(ρ)

]

Ẽ(ρ) =
[

X1(ρ)TE(ρ)
X2(ρ)TE(ρ) + (X3(ρ)TT T − CT H̄T )E(ρ)

]

L̄(ρ) = (X3(ρ)TΦ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+)

X(ρ) =
[
X1(ρ) X2(ρ)

0 X3(ρ)

]

Moreover, the gain is given by L(ρ) = X(ρ)−T L̄(ρ) and we have ||e||L2 < γ||w||L2
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J.3.3 Robust observer with approximate delay value - simple
Lyapunov-Krasovskii functional

When the delay-used in the observer is different from the delay of the system, the latter
results are not applicable. In such a case, the extended system writes
[
ẋ(t)
ė(t)

]
= (A(ρ) + ∆(t)A(ρ))

[
x(t)
e(t)

]
+ (Ah(ρ) + ∆(t)Ah(ρ))

[
x(t− h(t))
e(t− h(t))

]

Ad(ρ)
[
x(t− d(t))
e(t− d(t))

]
+ (E(ρ) + ∆(t)E(ρ))w(t)

zobs(t) = I
[
x(t)
e(t)

]
(J.316)

with

A(ρ) =
[
A(ρ) 0

0 M0(ρ)

]

∆A(ρ) =
[

∆A(ρ) 0
(T −HC)∆A(ρ) 0

]
=
[

G(ρ)
(T −HC)G(ρ)

]
∆(t)

[
HA(ρ) 0

]

Ah(ρ) =
[

Ah(ρ) 0
(T −HC)Ah(ρ) 0

]

∆Ah(ρ) =
[

∆Ah(ρ) 0
(T −HC)∆Ah(ρ) 0

]
=
[

G(ρ)
(T −HC)G(ρ)

]
∆(t)

[
HAh

(ρ) 0
]

Ad(ρ) =
[

0 0
0 Mh(ρ)

]

∆Ad(ρ) =
[

0 0
−(T −HC)∆Ah(ρ) 0

]
=
[

0
−(T −HC)G

]
∆(t)

[
HAh

(ρ) 0
]

E(ρ) =
[

E(ρ)
(T −HC)E(ρ))

]

∆E(ρ) =
[

∆E(ρ)
(T −HC)∆E(ρ)

]
=
[

G(ρ)
(T −HC)G(ρ)

]
∆(t)HE(ρ)

I =
[
It 0

]

(J.317)
and under conditions

(T −HC)A(ρ)−M0(ρ)(T −HC)−N0(ρ)C = 0
(T −HC)Ah(ρ)−Mh(ρ)(T −HC)−Nh(ρ)C = 0

The following result aims at providing a constructive sufficient condition of existence of the
observer (J.321). It is based on the application of Theorem 3.7.2 which the relaxed version of
Theorem 3.7.1 considering the stability and L2 performances of LPV systems with two delays
coupled through an algebraic equation. Since the methodology remains the same as for the
other results, the proof will be omitted.

Theorem J.9 There exists a parameter dependent observer of the form (J.321) such that
theorem 4.1.8 holds for all h ∈ H ◦

1 , d(t) = h(t) + ε(t) with ε(t) ∈ [−δ, δ] is satisfied if
there exist a continuously differentiable matrix function P : Uρ → Sr++, a matrix function
Z : Uρ → Rr×(2r+3m), constant matrices Qi, Ri ∈ Sr+n++ , i = 1, 2, X1 ∈ Rn×n, X2 ∈ Rn×r,
X3 ∈ Rr×r, H̄ ∈ Rr×m and a positive scalar γ > 0 such that the following LMIs

[
M(ρ, ν) + εH1(ρ)TH1(ρ) G1(ρ)T

? −εI

]
≺ 0 (J.318)
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and

[
Π(ρ, ν) + εH2(ρ)TH2(ρ) G2(ρ)T

? −εI

]
≺ 0 (J.319)
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hold for all (ρ, ν) ∈ Uρ × Uν and where

Π(ρ, ν) =
[

Π11(ρ, ν) Π12(ρ)
? Π22(ρ)

]

M(ρ, ν) =




−XH P (ρ) + Ã(ρ) Ãd(ρ) + Ãh(ρ) Ē(ρ) 0 XT hmaxR1 R2

? Θ11(ρ, ν) R1 0 IT 0 0 0
? ? Θ22 0 0 0 0 0
? ? ? −γI 0 0 0 0
? ? ? ? −γI 0 0 0
? ? ? ? ? −P (ρ) −hmaxR1 −R2

? ? ? ? ? ? −R1 0

? ? ? ? ? ? ? −R2

2δ




Π11(ρ, ν) =




−XH P (ρ) + Ã(ρ) Ãh(ρ) Ãd(ρ) Ē(ρ)
? Θ11(ρ, ν) R1 0 0
? ? Ψ22 (1− µ)R2/δ 0
? ? ? Ψ33 0
? ? ? ? −γI




Π12(ρ) =




0 XT hmaxR1 R2

IT 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




Π22(ρ) =




−γI 0 0 0
? −P (ρ) −hmaxR1 −R2

? ? −R1 0

? ? ? −R2

2δ




Θ11(ρ, ν) = −P (ρ) +Q1 +Q2 +
N∑

i=1

∂P

∂ρi
νi −R1

Θ22 = −(1− µ)(Q1 +Q2)−R1

Ψ22 = −(1− µ)(Q1 +R2/δ)−R1

Ψ33 = −(1− µc)Q2 − (1− µ)R2/δ

I =
[

0 Ir
]

L̄(ρ) = (XT
3 Φ(ρ)− H̄)Ψ(ρ)+ + Z(ρ)(I −Ψ(ρ)Ψ(ρ)+)

Ã(ρ) =
[
XT

1 A(ρ) 0
XT

2 A(ρ) XT
3 Θ(ρ)− L̄(ρ)Ξ(ρ)

]

Ãh(ρ) =
[

XT
1 Ah(ρ) 0

XT
2 Ah(ρ) +XT

3 (T − Φ(ρ)C)Ah(ρ) + L̄(ρ)Ψ(ρ)CAh(ρ) 0

]

Ãd(ρ) =
[

0 0
−XT

3 (T − Φ(ρ)C)− L̄(ρ)Ψ(ρ)C XT
3 Υ(ρ)− L̄(ρ)Ω(ρ)

]

Ē(ρ) =
[

XT
1 E(ρ)T

(XT
2 T − H̄C)E(ρ)T

]



J. COMPLEMENTS ON OBSERVATION AND FILTERING OF LPV TIME-DELAY
SYSTEMS 353

H1(ρ)T =




0
0

HA(ρ)T

0
HAh

(ρ)T

0
HE(ρ)T

0
0
0
0
0
0
0




G1(ρ)T =




X1(ρ)TG(ρ)
X1(ρ)TG(ρ) + (X3(ρ)TT − H̄C)G(ρ)

0
0
0
0
0
0
0
0
0
0
0
0




H2(ρ)T =




0
0

HA(ρ)T

0
HAh

(ρ)T

0
HAh

(ρ)T

0
HE(ρ)T

0
0
0
0
0
0
0




G2(ρ)T =




X1(ρ)TG(ρ)
X1(ρ)TG(ρ) + (X3(ρ)TT − H̄C)G(ρ)

0
0
0
0
0
0
0
0
0
0
0
0
0
0




Moreover, the gain is given by L(ρ) = X−T3 L̄(ρ) and we have ||e||L2 < γ||w||L2

J.3.4 Robust memoryless Observer

We consider now that no information on the delay is available in real time and thus only a
memoryless observer of the form

ξ̇(t) = M(ρ)ξ(t) +N(ρ)y(t)
ẑ(t) = ξ(t) +Hy(t)

(J.320)

is seeked.
In this case, the extended system is given by the expression
[
ẋ(t)
ė(t)

]
= (A(ρ) + ∆A(ρ))

[
x(t)
e(t)

]
+ (Ah(ρ) + ∆Ah(ρ))Y

[
x(t− h(t))
e(t− h(t))

]

+(E(ρ) + ∆E(ρ))w(t)

zobs(t) = I
[
x(t)
e(t)

] (J.321)
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where

A(ρ) =
[
A(ρ) 0

0 M(ρ)

]

∆A(ρ) =
[

∆A(ρ, t) 0
(T −HC)∆A(ρ, t) 0

]
=
[

G(ρ)
(T −HC)G(ρ)

]
∆(t)

[
HA(ρ) 0

]

Ah(ρ) =
[

Ah(ρ)
(T −HC)Ah(ρ)

]

∆Ah(ρ) =
[

∆Ah(ρ, t) 0
(T −HC)∆Ah(ρ, t) 0

]
=
[

G(ρ)
(T −HC)G(ρ)

]
∆(t)

[
HAh

(ρ) 0
]

E(ρ) =
[

E(ρ)
(T −HC)E(ρ)

]

∆E(ρ, t) =
[

∆E(ρ, t)
(T −HC)∆Eρ, t)

]
=
[

G(ρ)
(T −HC)G(ρ)

]
∆(t)

[
HE(ρ)

]

under the assumption that Lemma 4.1.11, which is a sufficient condition for the existence of
observer matrices, is satisfied.

The following theorem gives a sufficient condition on the existence of a robust memoryless
observer of the form (J.320). It is derived from Lemma 3.7.2 which considers the stability of
time-delay system in which the delay affects only a specific part of the state.

Theorem J.10 There exists a robust memoryless parameter dependent observer of the form
(J.320) such that theorem 4.1.10 holds for all h ∈H ◦

1 is satisfied if there exist a continuously
differentiable matrix function P : Uρ → Sr++, a matrix function Z : Uρ → Rr×(2r+3m),
constant matrices Q,R ∈ Sr+n++ , X1 ∈ Rn×n, X2 ∈ Rn×r, X3 ∈ Rr×r, H̄ ∈ Rr×m and a
positive scalar γ > 0

[
Ψ(ρ, ν) + εH(ρ)TH(ρ) G(ρ)T

? −εI

]
≺ 0 (J.322)
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holds for all (ρ, ν) ∈ Uρ × Uν where

Ψ(ρ, ν) =




−XH P (ρ) +XT Ã(ρ) XT Ãh(ρ) XT Ẽ(ρ) 0 XT hmaxY
TR

? Ψ′22(ρ, ν) R 0 IT 0 0
? ? −(1− µ)Q−R 0 0 0 0
? ? ? −γIm 0 0 0
? ? ? ? −γIr 0 0
? ? ? ? ? −P (ρ) −hmaxY TR
? ? ? ? ? ? −R




Ψ′22(ρ, ν) = ∂ρP (ρ)ν − P (ρ) + Y T (Q−R)Y
R ∈ Sn++

Z =
[
In 0

]

I =
[

0 Ir
]

L̄(ρ) = (XT
3 Φ(ρ)− H̄)Ψ(ρ)+ + Z(I −Ψ(ρ)Ψ(ρ)+)

H(ρ)T =




0
0

HA(ρ)T

0
HAh

(ρ)
HE(ρ)T

0
0
0
0




G(ρ)T =




X1(ρ)TG(ρ)
X1(ρ)TG(ρ) + (X3(ρ)TT − H̄C)G(ρ)

0
0
0
0
0
0
0
0




Moreover the generalized observer gain L(ρ) is given by the relation L(ρ) = X−T3 L̄(ρ) and we
have ||e||L2 < γ||w||L2.

J.4 Filtering of uncertain LPV Time-Delay Systems

This subsection aims at providing several results on the filtering of uncertain LPV systems.

J.4.1 Design of robust filters with exact delay-value - discretized
Lyapunov-Krasovskii functional

Since Theorem 4.2.1 may result in conservative results due to the use of a simple Lyapunov-
Krasovskii functional, the next theorem extends the result in the case of a discretized Lyapunov-
Krasovskii functional. It is based on the application of Theorems of Section 3.6 which address
the problem of stability/performances of LPV time-delay systems using a discretized func-
tional.

Theorem J.11 There exists a full-order filter of the form (J.292) with d(t) = h(t), h(t) ∈
H ◦

1 if there exists a continuously differentiable matrix function P : Uρ → S2n
++, symmetric

matrices Q̃i, R̃i ∈ S2n
++, X̂ ∈ R2n×2n, matrix functions ÃF , ÃFh : Uρ → Rn×n, B̃F : Uρ →

Rn×m, C̃F , C̃Fh : Uρ → Rt×n, D̃F : Uρ → Rn×m and a scalar γ, ε > 0 such that the LMI
[

Ψ11(ρ, ν) + εH(ρ)TH(ρ) G(ρ)T

? −εI

]
≺ 0 (J.323)
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holds for all (ρ, ν) ∈ Uρ × Uν and where

Ψ11(ρ, ν) =




−X̂H Ũ12(ρ) 0 X̂T h̄1R̃0 . . . h̄1R̃N−1

? Ũ22(ρ, ν) Ũ23(ρ) 0 0 . . . 0
? ? −γI 0 0 . . . 0
? ? ? −P̃ (ρ) −h̄1R̃0 . . . −h̄1R̃N−1

? ? ? ? −diagi R̃i




U22 =




U ′11 R̃0 0 0 . . . 0 0
? Ñ

(1)
1 R̃1 0 . . . 0 0

? ? Ñ
(1)
2 R̃2 0 0

. . . . . .
...

...
. . . R̃N−1 0

Ñ (2) 0
? ? ? . . . 0 0 −γI




Ũ ′11 = ∂ρP̃ (ρ)ρ̇− P̃ (ρ) + Q̃0 − R̃0

Ñ
(1)
i = −(1− iµN )Q̃i−1 + (1 + iµN )Q̃i − R̃i−1 − R̃i

Ñ (2) = −(1− µ)Q̃N−1 − R̃N−1

Ũ12(ρ) =
[
P (ρ) + Ã(ρ) 0 0 Ãh(ρ) . . . 0 Ẽ(ρ)

]

Ũ23(ρ) =
[
C̃(ρ) 0 . . . 0 C̃h(ρ) F(ρ)

]T

X̂ =
[
X̂1 X̂2

X̂3 X̂3

]

Ã(ρ) =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) =
[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) ÃFh(ρ)

]

Ẽ(ρ) =



X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)




C̃(ρ)T =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]

C̃h(ρ)T =
[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

−C̃Fh(ρ)

]

X̂3 = UTΣU (SVD)
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H(ρ)T =




0
0

Hx(ρ)T 0
...
0

Hxh(ρ)T

0
Hw(ρ)T

0
0
0
0
...
0




G(ρ)T =




X̂T
1 Gx(ρ) + B̃F (ρ)Gy(ρ)
X̂TGx + B̃F (ρ)Gy(ρ)

0
0
...
0
0
0
0

Gz(ρ)−DF (ρ)Gy(ρ)
0
0
0
0
...
0




Moreover the filter matrices are computed using

[
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)U−1Σ−1 U−T ÃFh(ρ)U−1Σ−1 U−T B̃F (ρ)
C̃F (ρ)U−1Σ−1 C̃Fh(ρ)U−1Σ−1 D̃F (ρ)

]

and we have ||e||L2 ≤ γ||w||L2.

J.4.2 Design of robust filters with approximate delay-value

This section provides a result on the existence of a robust filter implementing a delay which
is different from the system one. In this case, the extended system describing the evolution
of the system and the filter is given by

[
ẋ(t)
ẋF (t)

]
= (A(ρ) + ∆A(ρ, t))

[
x(t)
xF (t)

]
+ (Ah(ρ) + ∆Ah(ρ, t))

[
x(t− h(t))
xF (t− h(t))

]

+Ad(ρ)
[
x(t− d(t))
x(t− d(t))

]
+ (E(ρ) + ∆E(ρ, t))w(t)

e(t) = z(t)− zF (t)

= (C(ρ) + ∆C(ρ, t))
[

x(t)
xF (t)

]
+ (Ch(ρ) + ∆Ch(ρ, t))

[
x(t− h(t))
xF (t− h(t))

]

+(F(ρ) + ∆F(ρ, t))w(t)
(J.324)
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where

A(ρ) =
[

A(ρ) 0
BF (ρ)Cy(ρ) AF (ρ)

]

∆A(ρ, t) =
[

∆A(ρ, t) 0
BF (ρ)∆Cy(ρ, t) 0

]
=
[

Gx(ρ)
BF (ρ)Gy(ρ)

]
∆(t)

[
Hx(ρ) 0

]

Ah(ρ) =
[

Ah(ρ) 0
BF (ρ)Cyh(ρ) 0

]

∆Ah(ρ, t) =
[

∆Ah(ρ, t) 0
BF (ρ)∆Cyh(ρ, t) 0

]
=
[

Gx(ρ)
BF (ρ)Gy(ρ)

]
∆(t)

[
Hxh(ρ) 0

]

Ad(ρ) =
[

0 0
0 AFh(ρ)

]

E(ρ) =
[

E(ρ)
BF (ρ)Fy(ρ)

]

∆E(ρ, t) =
[

∆E(ρ, t) 0
BF (ρ)∆E(ρ, t) 0

]
=
[

Gx(ρ)
BF (ρ)Gy(ρ)

]
∆(t)Hw(ρ)

C(ρ) =
[
C(ρ)−DF (ρ)Cy(ρ) −CF (ρ)

]

∆C(ρ, t) =
[

∆C(ρ, t)−DF (ρ)∆Cy(ρ, t) 0
]

= (Gz(ρ)−DF (ρ)Gy(ρ))∆(t)
[
Hx(ρ) 0

]

Ch(ρ) =
[
Ch(ρ)−DF (ρ)Cyh(ρ) −CFh(ρ)

]

∆Ch(ρ, t) =
[

∆Ch(ρ, t)−DF (ρ)∆Cyh(ρ, t) 0
]

= (Gz(ρ)−DF (ρ)Gy(ρ))∆(t)
[
Hxh(ρ) 0

]

F(ρ) = F (ρ)−DF (ρ)Fy(ρ)
∆F(ρ, t) = ∆F (ρ)−DF (ρ)∆Fy(ρ) = (Gz(ρ)−DF (ρ)Gy(ρ))∆(t)Hw(ρ)

In this case, we obtain the following theorem which is derived from the application of
Theorem 3.7.2 addressing the difficult problem of stability analysis of LPV time-delay systems
with two coupled delays.

Theorem J.12 There exists a filter of the form (J.300) for system (J.291) with d(t) =
h(t), h(t) ∈ H ◦

1 if there exists a continuously differentiable matrix function P̃ : Uρ → S2n
++,

symmetric matrices Q̃1, Q̃2, R̃1, R̃2 ∈ S2n
++, X̂ ∈ R2n×2n, matrix functions ÃF , ÃFh : Uρ →

Rn×n, B̃F : Uρ → Rn×m, C̃F , C̃Fh : Uρ → Rt×n, D̃F : Uρ → Rn×m and a scalar γ > 0 such
that the LMIs

[
Θ(ρ, ν) + εH1(ρ)TH1(ρ) G1(ρ)T

? −εi

]
≺ 0 (J.325)

and
[

Π(ρ, ν) + εH2(ρ)TH2(ρ) G2(ρ)T

? −εI

]
≺ 0 (J.326)
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hold for all (ρ, ν) ∈ Uρ × Uν and where

Π(ρ, ν) =
[

Π̃11(ρ, ν) Π̃12(ρ)
? Π̃22(ρ)

]

Θ(ρ, ν) =




−X̂H P̃ (ρ) + Ã(ρ) Ãhd(ρ) Ẽ(ρ) 0 X̂(ρ)T hmaxR̃1 R̃2

? Θ̃11(ρ, ν) R̃1 0 C̃(ρ)T 0 0 0
? ? Θ̃22 0 C̃hd(ρ)T 0 0 0
? ? ? −γI F(ρ)T 0 0 0
? ? ? ? −γI 0 0 0
? ? ? ? ? −P̃ (ρ) −hmaxR̃1 −R̃2

? ? ? ? ? ? −R̃1 0

? ? ? ? ? ? ? −R̃2

2δ




Π̃11(ρ, ν) =




−X̂H P̃ (ρ) + Ã Ãh(ρ) Ãd(ρ) Ẽ(ρ)
? Θ̃11(ρ, ν) R̃1 0 0
? ? Ψ̃22 (1− µ)R̃2/δ 0
? ? ? Ψ̃33 0
? ? ? ? −γI




Π̃12(ρ) =




0 X̂T hmaxR̃1 R̃2

C̃(ρ)T 0 0 0
C̃h(ρ)T 0 0 0
C̃d(ρ)T 0 0 0
F(ρ)T 0 0 0




Π̃22(ρ) =




−γI 0 0 0
? −P̃ (ρ) −hmaxR̃1 −R̃2

? ? −R̃1 0

? ? ? −R̃2

2δ




Θ̃11(ρ, ν) = −P̃ (ρ) + Q̃1 + Q̃2 +
N∑

i=1

∂P̃

∂ρi
νi − R̃1

Θ̃22 = −(1− µ)(Q̃1 + Q̃2)− R̃1

Ψ̃22 = −(1− µ)(Q̃1 + R̃2/δ)− R̃1

Ψ̃33 = −(1− µc)Q̃2 − (1− µ)R̃2/δ

C̃hd = C̃h(ρ) + C̃d(ρ)
Ãhd = Ãh(ρ) + Ãd(ρ)
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X̂ =
[
X̂1 X̂2

X̂3 X̂3

]

Ã(ρ) =
[
X̂T

1 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)
X̂T

2 A(ρ) + B̃F (ρ)Cy(ρ) ÃF (ρ)

]

Ãh(ρ) =
[
X̂T

1 Ah(ρ) + B̃F (ρ)Cyh(ρ) 0
X̂T

2 Ah(ρ) + B̃F (ρ)Cyh(ρ) 0

]

Ãd(ρ) =
[

0 ÃFh(ρ)
0 ÃFh(ρ)

]

Ẽ(ρ) =



X̂1E(ρ) + B̃F (ρ)Cy(ρ)
X̂T

2 E(ρ) + B̃F (ρ)Cy(ρ)




C̃(ρ)T =
[
C(ρ)T − Cy(ρ)TDF (ρ)T

−C̃F (ρ)

]

C̃h(ρ)T =
[
Ch(ρ)T − Chy(ρ)TDF (ρ)T

0

]

C̃d(ρ)T =
[

0
−C̃Fh(ρ)

]

X̂3 = UTΣU (SVD)

G1(ρ)T =




X̂T
1 Gx(ρ) + B̃F (ρ)Gy(ρ)
X̂TGx + B̃F (ρ)Gy(ρ)

0
0
0
0
0

Gz(ρ)− D̃F (ρ)Gy(ρ)
0
0
0
0
0
0




H1(ρ)T =




0
0

Hx(ρ)T

0
Hxh(ρ)T

0
0

Hw(ρ)
0
0
0
0
0
0



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G2(ρ)T =




X̂T
1 Gx(ρ) + B̃F (ρ)Gy(ρ)
X̂TGx + B̃F (ρ)Gy(ρ)

0
0
0
0
0
0
0

Gz(ρ)− D̃F (ρ)Gy(ρ)
0
0
0
0
0
0




H2(ρ)T =




0
0

Hx(ρ)T

0
Hxh(ρ)T

0
0
0
0

Hw(ρ)
0
0
0
0
0
0




Moreover the filter matrices are computed using
[
AF (ρ) AFh(ρ) BF (ρ)
CF (ρ) CFh(ρ) DF (ρ)

]
=

[
U−T ÃF (ρ)U−1Σ−1 U−T ÃFh(ρ)U−1Σ−1 U−T B̃F (ρ)
C̃F (ρ)U−1Σ−1 C̃Fh(ρ)U−1Σ−1 D̃F (ρ)

]

and we have ||e||L2 ≤ γ||w||L2.
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Abstract: This paper introduces a new model for disease outbreaks. This model describes
the disease evolution through a system of nonlinear differential equations with distributed-
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effectiveness of the model. Finally, we develop an optimal campaign vaccination strategy based
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1. INTRODUCTION

Nowadays, due to the large mobility of people within a
country or even worldwide, the risk of being infected by a
virus is relatively higher than several decades ago. That is
why it is interesting to elaborate models of the evolution
of diseases in order to develop strategies to decrease the
impact of the outbreak.

The first model of an epidemic was suggested by Bernoulli
in 1970. He used this model to explain the basic con-
trol effects obtained through population immunization,
and the advantages of vaccination in order to prevent an
epidemic. Simple mathematical models are governed by
action-mass laws [Daley and Gani, 1999, Hethcote, 2002].
The rate of spread of infection is hereby assumed to be
proportional to the density of susceptible people and the
density of infected people (strong homogenous mixing).
Simpler models, based on weak homogenous mixing (rate
of new infections proportional to the number of suscep-
tibles) are explored in [Anderson and May, 2002]. One
parameter stands out in these models: the ratio of the rate
of infection to the rate of recovery, denoted by r0, called
the basic reproduction number. It is the average number of
new cases produced when one infective is introduced into
a completely susceptible host population. A basic result in
modern epidemiology is the existence of a threshold value
for the reproduction number. If r0 is below the threshold,
an epidemic outbreak does not follow the introduction of a
few infectious individuals in the community. For example
measles has a r0 on the order of 12-15 Anderson and May
[1982].

The biological processes of sudden and severe epidemics
are inherently nonlinear, and exhibit fundamentally differ-
1 The authors contributed equally to this work

ent dynamic behaviors from linear systems (e.g. multiple
equilibria, limit cycles, and chaos). In addition, more com-
plex nonlinear models encompassing spatial variation (i.e.
mixing locally within households and globally throughout
the population, temporal variation (age structure) and
delays [den Driessche] are also required to give added
realism, which makes the control problem even harder.
Hence, regarding the control of epidemics, few analytical
results exist. A notable and recent exception is the work
of Behncke [2000]. Nonetheless, analytical or numerical ap-
proximations for infection control measures such as vacci-
nation, dose profile and timing in pulse vaccination regimes
[Stone et al., 2000], isolation and quarantine, screening or
other public health interventions are vital for controlling
severe epidemics. When using finite dimensional models, it
is clear that when the initial state is reached again through
the action of the control, the process will be periodic
[Bainov and Simeonov, 1996]. This is the principle behind
pulse vaccination [Nokes and Swinton, 1997], although
true periodicity of the state is not assumed. However,
when delays are present the system is inherently infinite
dimensional, and it is unlikely that the same state may
be reached twice. Hence the premise that a periodic pulse
vaccination strategy is optimal is false. Techniques recently
developed by the authors Verriest et al. [2004] for optimal
impulsive control for systems with delays will be applied
in order to overcome this problem.

We propose in this paper a new model embedding further
information such as the minimal time spent sick by the
infected population. This model considers that infected
people remain sick for a certain amount of time greater
to a threshold τ . This time is defined by a distribution
over [τ, +∞). The model is validated while identifying
its parameters using real epidemic measurements reported



in a medicine journal Lancet [March 4 1978]. Finally we
develop an optimal pulse vaccination strategy [E.I. Verriest
and Egerstedt, 2005, Verriest, 2005] minimizing a certain
criterium.

In section 2, we recall classical epidemiological models
and in section 3 some vaccination strategies are discussed.
Then a new model is given to represent the dynamic of
the disease among the population in section 4. Finally,
in section 5 the optimal pulse vaccination strategy is
teated and illustrated through an example based on a real
scenario.

2. SIR MODELS

To understand how basic epidemics models work, we will
first describe some open loop models. The most basic
model is the SIR model. People who are susceptible (S) be-
come infected with a force of infection proportional to the
number of infected (I). After the infection people become
immune and are removed (the R in the SIR model), or
become infected again (SIS model). The simplest of these
models are closed in the sense that total population re-
mains fixed, either by disregarding immigration (for short
duration outbreaks) or assuming that birth and death
rates are equal (for long duration models) or both. These
are the basic Kermack-McKendrick models described in
all introductory books on mathematical epidemiology and
they will be briefly described below:

Ṡ = −f1(S, I) + f2(I, R)
İ = f2(S, I)− f3(I, S)
Ṙ = f3(I, S)− f2(I, R)

(1)

where f1 > 0 models the rate of infection, f2 > 0 the rate
at which recovered people become susceptible again and
f3 > 0 the rate of recovery for (R, I, S) ∈ R3

+

However, diseases such as measles do not fit such a descrip-
tion, and call for an extended model sporting a compart-
ment of exposed but not yet infectious (E) individuals. It
is assumed that individuals stay in this class for a fixed
period of time and hence such a model involves delays.
Once the tools for the study of epidemic models have been
produced and the models themselves understood, the real
test of their validity is to use these models in predicting
the outcome of various interventions Wickwire [1977], and
ultimately in optimizing such interventions.

A natural question is: “What can be done to prevent a
predicted epidemic from occurring?” The above models
cast in various level of detail the evolution of epidemics
as dynamical systems and first question one has to ask
here is: “How can the dynamics be influenced by external
factors?” and as standard in control theory, “What closed
loop control strategies can be used?”

3. MATHEMATICAL FRAMEWORK

In order to be able to solve optimal immunization prob-
lems, some results on optimal impulse control must be
recalled Verriest et al. [2004], and for the sake of easy
reference, we restate them here.

3.1 Optimal Impulse Control for Point Delay Systems

To fix ideas, let the autonomous system under considera-
tion be modeled by

ẋ = f(x) + g(xτ ), (2)
where xτ = x(t−τ), and where x(θ) is given for −τ < θ <
0. Moreover, let the effect of the impulsive inputs be given
by

x(T +
i ) = x(T−i ) + G(x(T−i ), ui, Ti). (3)

The amplitudes, ui, and instants, Ti, are to be chosen such
that a performance index

J =
∫ tf

0

L(x(t))dt +
N−1∑

i=1

K(x(T−i ), ui, Ti) (4)

is optimized. Now, in Verriest et al. [2004], the following
result (that will provide a basis for the developments on
this proposal) was derived:
Theorem 3.1. The impulsive system in Equations (2) and
3 minimizes the performance index (4) if the magnitudes
ui and times Ti are chosen as follows:
Define:

Hi = L(x) + λT
i (f(x) + g(xτ )) (5)

Mi = K(x(T−i ), ui, Ti) + µiG(x(T−i ), ui, Ti). (6)

Euler-Lagrange Equations:

λ̇i =−
(

∂L

∂x

)T

−
(

∂f

∂x

)T

λi−χ+
i

(
∂g

∂x

)T

λτ
i −χ−i+1

(
∂g

∂x

)T

λτ
i+1, (7)

with Ti−1 < t < Ti, i = 1, . . . , N−1, and where χ+
i (t) = 1

if t ∈ [Ti−1, Ti−τ ] and 0 otherwise, χ−i+1(t) = 1 if t ∈ [Ti−
τ, Ti] and 0 otherwise, and λτ

i = λi(t + τ). Moreover,

λ̇N = −
(

∂L

∂x

)T

−
(

∂f

∂x

)T

λN − χ+
N

(
∂g

∂x

)T

λτ
N . (8)

Boundary Conditions:

λN (TN ) = 0 (9)

λi(T−i ) = λi+1(T +
i ) +

(
∂Mi

∂x

)T

. (10)

Multipliers:

µi = λi+1(T +
i ), i = 1, . . . , N − 1 (11)

µN =−
(

∂MN

∂x

)T

. (12)

Optimality Conditions:

dJ

dui
=

∂Mi

∂ui
= 0 (13)

dJ

dTi
= Hi(T−i )−Hi+1(T +

i ) +
∂Mi

∂Ti
(14)

+λi+1(Ti+τ)T(g(x(T +
i ))−g(x(T−i )))=0.

These necessary optimality conditions will have to be
massaged in some manner in order to be numerically
effective.



3.2 Gradient Descent

The reason why the formulas derived here above are
particularly easy to work with is that they give us access
to a very straight-forward numerical algorithm.

For each iteration k, let θ(k) = (T, v)T be the vector of
control variables, and compute the following:

(1) Compute x(t) forward in time on [t0, tf ] by integrat-
ing from x(t0) = x0.

(2) Compute the costate λ(t) backward in time from tf
to t0 by integrating the costate dynamics.

(3) Use the equations above to compute ∇θJ = ( dJ
dT , dJ

dv ).
(4) Update θ as follow :

θ(k + 1) = θ(k)− l(k)∇θJ
T ,

where l(k) is the step size, e.g. given by the Armijo
algorithm Armijo [1996].

(5) Repeat.

Note that the cost function J may be non-convex which
means that we can only expect the method to reach a
local minimum. But, as we will see, it still can give quite
significant reductions in cost.

4. DELAY-SIR MODEL

In this section a new model for an epidemic, the delay
SIR, is proposed and matched against real epidemic data.
While both the new and the old (standard SIR) model
corroborate the data, the delay-SIR may be more adapted
to a physical model of the disease.

The main ingredient in this model is the fact that we
assume that once infected, a person is instantaneously
infectious, and this for at least a time τ . After this initial
lapse, we assume that the person remains infectious for an
additional random time span, characterized by a density
function ρ(θ). Such a model seems more reasonable to
us, than the assumption that the infectious people are
removed at a rate α used in the standard SIR model. Hence
the delay-SIR model is described by

Ṡ(t) =−βS(t)I(t) (15)

İ(t) = βS(t)I(t) −Q(t) (16)
with Q(t) the removal rate. As in the classic SIR, in a
time ∆t the number of newly infected is given by the
mass action law βS(t)I(t)∆t. Meanwhile from the newly
infected between time t− θ and t + ∆t− θ, a fraction ρ(θ)
becomes immune and is removed from the infected. The
support of ρ is contained in (τ,∞). Hence,

Q(t) =
∫ ∞

τ

ρ(θ)S(t− θ)I(t − θ)dθ. (17)

If ρ has a rational Laplace transform, the above equations
may be extended to a pure (crisp) delay system by further
differentiation, as explained in Verriest [1999]. This leads
to a general delay model of the form

Ṡ(t) =−βS(t)I(t) (18)

p(t) = S(t)I(t) (19)

İ(t) = βS(t)I(t) − hq(t) (20)

q̇(t) = Fq(t) + gp(t− τ). (21)

A block diagram is given in Figure 1. where dim(q) = n

−β

τ

H(s)

+

1
s

1
s

−

+

S

I

×

Fig. 1. Generic Delay-SIR

and (F, g, h) is an n-th SISO system with transfer function
H(s) = h(sI − F )−1g. It can be reorganized as an input-
delayed linear system with nonlinear dynamic feedback.
In this form the delay τ may be identifiable from the data
using techniques from Belkoura et al. [2006].

We used the data published in Lancet [March 4 1978],
(the Lancet, March 4, 1978) because it has been used by
other authors. This data pertains to an influenza epidemic
in a boys’ boarding school. The population in this model
is N = 763. Assuming that the onset was due to one
infected individual, we set S(0) = 762 and I(0). The best
fit for the SIR model was obtained. The original data
and the best fitting SIR model (β := 0.00218; α := 0.44)
are displayed in Figure 2. We considered the delay-SIR
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0

0 2010 155

Fig. 2. SIR model fit to raw data

model with second order distribution (meaning that the
corresponding H(s) is a second order system).

ρ(θ) = N (1 + γθ) e−λθ

Here N is a normalization factor, ensuring that∫ ∞

τ

ρ(θ)dθ = 1

We find

N =
λ2

γ + λ + γλτ
eλτ .



This distribution corresponds to a second order Jordan
block. A good fit to the data was found for τ = 0.69, β =
0.00177, γ = 0.3, and λ = 0.75. The evolution of I(t) and
S(t) is given in Figure 3. The detailed description is thus

5.0 12.57.52.5
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Fig. 3. Delay SIR model (Jordan) fit to raw data

Ṡ(t) = −βS(t)I(t)
İ(t) = βS(t)I(t)− βN (q1(t) + γq2(t)
Ṙ(t) = βN (q1(t) + γq2(t)
p(t) = S(t)I(t)
q̇1(t) = −λq1(t) + e−λτ p(t− τ)
q̇2(t) = q1(t)− λq2(t) + τ e−λτ p(t− τ)

(22)

5. OPTIMAL PULSE VACCINATION

We present here the application of the optimal pulse
control to the proposed model of dynamic outbreak.

5.1 Necessary and Sufficient Conditions for optimal pulse
vaccination

Model (22) needs to be augmented by the set of equations
(23)-(27) to capture the whole impulsive control frame-
work.

S(T +
k ) = S(T−k )− vk (23)

I(T +
k ) = I(T−k ) (24)

R(T +
k ) = R(τ−k ) + vk (25)

q1(T +
k ) = q1(T−k ) (26)

q2(T +
k ) = q2(T−k ) (27)

The vaccination takes place at certain times Tk, k = 1, . . .
and have magnitude vk. These decision variables must be
determined in order to minimize the objective function
(we consider a one pulse vaccination strategy for sake of
simplicity)

J(v, T ) = cv2 +
∫ tf

0

I(t)dt. (28)

The integral term measures the burden of disease (total
time spent sick in the population) during the epidemic,
and the quadratic control cost reflects the added logistical

burden when large populations need to be vaccinated. Note
that a purely linear vaccination cost, without imposing the
constraint v ≥ 0, may lead to inadmissible controls Ogren
and Martin [2000].

We present here a simple result with one pulse vaccination
strategy
Lemma 5.1. Consider system (22) with (23)-(27), there
exist an (locally) optimal one pulse vaccination strategy
minimizing cost (28) if the following necessary and suffi-
cient conditions are satisfied:

Necessary Conditions

λ̇ = −
(

∂L

∂x

)T

−
(

∂f

∂x

)
λ−

(
∂g

∂x

)
λτ

λ(η) = 0, η ∈ [tf , tf + τ ]

t ∈ [T, tf ]

Sufficient Conditions

2cv + λ(T )T



−1
0
0
0


 = 0

βλ(T )T



−1
1
0
0


− e−λτ λ(T + τ)T




0
0
1
τ


 = 0,

λ(η) = 0, η ∈ [tf , tf + τ ]

with

df

dx
=



−βI −βS 0 0
βI βS −βN −βNγ
0 0 −λ 0
0 0 1 −λ


 (29)

dg

dx
=




0 0 0 0
0 0 0 0

− e−λτ I − e−λτ S 0 0
τ e−λτ I τ e−λτ S 0 0


 dL

dx
= [0 1 0 0] (30)

Proof : Identifying system (22) with template system (2)
we have L(x) = I,

f(x) =




−βSI
βSI − βN (q1 + γq2)

−λq1

q1 − λq2


 g(x) =




0
0

e−λτ SI
τ e−λτ SI




(31)
It is then straightforward to compute the Jacobian matri-
ces.

We have removed the equation governing R since its value
can be trivially retrieved from S and I (i.e. we have the
relation S + I + R = cst).

Note we have

L(x) = I
∂L

∂x
= [0 1 0 0]

K(x(T−), v, T ) = cv2
(32)

As M = K + µT G satisfies ∂M
∂x = 0, it means that

λ1(T−) = λ2(T +) (i.e. the costate is continuous). Now
let λ denote this single continuous costate and note that



we only need to solve for λ on the time interval [T, tf ] with
λ(tf ) = 0. After solving for λ, we get that µ = λ(T ) and
hence that the first optimality conditions implies

dJ

dv
= 2cv + λ(T )T



−1
0
0
0


 = 0 (33)

The second optimality condition is a bit more involved
since the function g(x) depends on S which will experi-
ence an impulse at time T . First note that g(xτ (T−)) −
g(xτ (T +)) = 0 then it is straightforward to obtain

H(T−)−H(T +) = λ(T )T (f(x(T−))− f(x(T +))) (34)
where

f(x(T−))− f(x(T +)) =



−βI(T )v
βI(T )v

0
0


 (35)

Moreover as

g(x(T +))− g(x(T−)) =




0
0

− e−λτ I(T )v
−τ e−λτ I(T )v


 (36)

then we get

dJ

dT
= λ(T )T βI(T )v



−1
1
0
0


−λ(T+τ)T e−λτ I(T )v




0
0
1
τ


 = 0

(37)
and assuming that neither I(T ) = 0 nor v = 0 we have

βλ(T )T



−1
1
0
0


− e−λτ λ(T + τ)T




0
0
1
τ


 = 0 (38)

�

5.2 Numerical Example

We consider the model identified in Section 4 (i.e. τ =
0.69, β = 0.00177, γ = 0.3, and λ = 0.75). The results are
summarized below with u0 = 100 and T0 = 10 as initial
conditions:

HHHHHc
tf 15 50

0.02 100 298
0.05 99.9 234
0.1 77.22 198
0.2 39.6 119.8
0.5 16 47.9
0.8 10 32.28
1 8 26.5
3 2.7 9.11

Table 1. Optimal values of u w.r.t. cost (i.e. c
and tf )

It is worth noting that for tf = 15 we always find T = 5.7
while for tf = 50 we get T = 6.64. For simulation purpose
we choose an interesting case: c = 0.02 and tf = 15 we
obtain figure 4.
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Fig. 4. Evolution of infected people without (plain) and
with one pulse vaccination strategy (dashed) - cri-
terium 1

If we compute the ratio of the integral term
∫ tf

0
I(t)dt with

and without the vaccination strategy we obtain ratio =
0.8577 and this measures the reduction of the number of
people who gets infected.

In the case c = 0.02 and tf = 50 we obtain figure 5.
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Fig. 5. Evolution of infected people without (plain) and
with one pulse vaccination strategy (dashed) - cri-
terium 2

In that case we obtain: ratio = 0.6981 and this shows that
strategy 2 is better than the first one. Nevertheless, the
second strategy is more expensive than the first one.

It is worth noting that, the multiple pulse vaccination
strategy might lead to better result but it is not detailed
here for sake of brevity. In this case, the new criterium to
minimize should be

Jn :=
Np∑

i=1

ciu
2
i +

∫ tf

0

I(t)dt (39)

where ci > 0 are chosen weighting parameters.

6. CONCLUSION

We have proposed a new epidemiological model. This new
model considers the standard SIR model but includes a



distribute delay modeling the rate at which infected people
recover from the disease. Following the measurement of an
real outbreak, we have identified the parameters and shows
that it correctly describes the reality. On the other hand,
we have developed an optimal pulse vaccination strategy
minimizing a certain criterium measuring the cost of the
campaign and the time spent by the population being sick.
The interest of the approach is demonstrated through a
realistic example.
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Stability analysis and model-based control in EXTRAP-T2R with
time-delay compensation

Erik Olofsson1, Emmanuel Witrant2, Corentin Briat2, Silviu-Iulian Niculescu3 and Per Brunsell1

Abstract— In this paper, we investigate the stability problems
and control issues that occur in a reversed-field pinch (RFP)
device, EXTRAP-T2R (T2R), used for research in fusion plasma
physics and general plasma (ionized gas) dynamics. The plant
exhibits, among other things, magnetohydrodynamic instabilities
known as resistive-wall modes (RWMs), growing on a time-scale
set by a surrounding non-perfectly conducting shell. We propose
a novel model that takes into account experimental constraints,
such as the actuators dynamics and control latencies, which lead
to a multivariable time-delay model of the system. The open-
loop field-error characteristics are estimated and a stability
analysis of the resulting closed-loop delay differential equation
(DDE) emphasizes the importance of the delay effects. We
then design an structurally constrained optimal PID controller
by direct eigenvalue optimization (DEO) of this DDE. The
presented results are substantially based on and compared with
experimental data.

I. INTRODUCTION

Control of magnetohydrodynamic (MHD) instabilities in
toroidal devices for magnetic confinement is a crucial issue
for thermonuclear fusion plasmas (high-temperature ionized
gases) [1]. Indeed, advanced plasma confinement scenarios,
as considered for the ITER experiment (a major step towards
industrial fusion reactors) [2], motivate a better understand-
ing of MHD phenomena and their regulation. The reversed-
field pinch (RFP) device T2R, being the subject of this work,
is particularly well suited for MHD studies in general (one
of the main focuses of this facility) and more specifically for
active control of MHD modes. Continuous research efforts
have been done in this direction [3], [4], [5] based on
physical approaches. We are now addressing the problem
from a control-oriented point of view, highlighting impact
of actuator dynamics to closed-loop stabilization.

T2R, sketched in Fig. 1(a), is a torus equipped with an
equidistributed array of equally shaped 4×32 actuator saddle
coils fully covering the surface outside a resistive wall (and
vacuum container), and a corresponding set of 4×32 sensor
saddle coils inside the wall (with 50% surface coverage).
The coils inputs and outputs are subtracted pairwise in a top-
down and inboard-outboard fashion, effectively implying 64
control and 64 measurement signals.

The MHD instabilities lead to non-symmetric electric
currents within the plasma torus, causing perturbed magnetic
fields outside of the plasma at the position of the surrounding
wall. Complete stabilization would be achieved by an ideally

1KTH/EES Fusion Plasma Physics (Association EURATOM-VR),
Stockholm, Sweden 2UJF-INPG/GIPSA-lab, Grenoble, France and
3CNRS/Supélec Laboratoire des Signaux et Systémes, Gif-sur-Yvette,
France.

Corresponding author email: erik.olofsson@ee.kth.se

conducting wall forcing the boundary magnetic field to
vanish. In practice, eddy currents decay allow perturbed mag-
netic flux to penetrate the wall and hence the MHD instabili-
ties to grow. To counteract this problem, the intelligent-shell
(IS) concept [6] has been devised, to emulate the behavior
of an ideally conducting wall by (decentralized) feedback
control of external current-carrying coils. The RFP type of
toroidal plasma confinement is particularly suited to study
this method and stabilization of multiple independent MHD
instabilities has recently been reported [5]. To emphasize the
significance of IS feedback MHD-stabilization for T2R, note
that the plasma is confined during ∼ 15−20 ms only without
IS whereas a sustained plasma current is routinely achieved
for over 90ms with IS (limited by the experiment’s power
supply).

There is a strong motivation for developing this technique
also for Tokamak fusion devices [7] (such as JET and
ITER), the configuration mainly pursued today for magnetic
confinement fusion research.

The aim of this paper is to introduce and analyze a new
model for describing T2R dynamics, by explicitly taking
into account the sensors/actuators configuration (aliasing and
additional dynamics) and the control implementation (time-
delays). To the best of the authors’ knowledge, no system-
atic study of controller gain design for T2R IS operation
explicitly including such experimental conditions has been
made. We develop our description of the plant from a
control viewpoint and employ a fixed-structure gain synthesis
approach (presently instantiated for a classic PID) for T2R
IS. Controller gains are directly optimized for a closed-loop
delay differential equation (DDE) model. Experimental re-
sults illustrate the performance improvements in comparison
with the explorative work [3], where PID gains scans and
qualitative applicability of linear models were presented.

Paper organization as follows. First, a model describing
the MHD unstable modes is introduced in Section II and the
delay effects on the asymptotic stability of the corresponding
model are analyzed in Section III. The design of a control
law is presented in Section IV, and Section V is devoted
to experimental results and highlights the performance im-
provements. Some concluding remarks end the paper.

II. MAGNETOHYDRODYNAMIC UNSTABLE
MODES MODEL

The purpose of this section is threefold: first, to outline
the unstable physics, second, to interface the corresponding
model to a configuration of sensors and actuators and finally,
to introduce an appropriate DDE (5) to be analyzed.



A. Resistive-wall mode physics in the reversed-field pinch

MHD theory [7], [8], [9] is the underlying physical level-
of-detail employed here, a continuum description intended to
capture behavior of conducting fluid matter, such as plasma
gases and liquid metals. MHD effectively is a simultaneous
application of Navier-Stokes’ and Maxwell’s equations. The
system at hand is approximated by a periodic cylinder1, with
period 2πR, R being the major toroidal radius, and thus
reduced to the minor radial dimension r. The well-known
MHD equations are: momentum ρdvdt = j×B−∇p, Ohm’s
law E + v × B = ηj together with Maxwell’s, continuity
and the adiabatic equation of state. For ideal MHD [8]
resistivity η → 0. A flowless v = 0 and ideal equilibrium
j0 × B0 = ∇p0, E0 = 0 is solved for using a standard
current-profile and pressure parameterization [10], defining
a magnetic structure in the plasma region 0 < r < ra,
the plasma column. A vacuum layer isolates the plasma
boundary r = ra from the conducting vessel wall at r = rw.
This wall is modeled thin [11]. Region rw < r < +∞ is air.
An external source is positioned at r = rc > rw (active coils
outside the shell). Linear stability of perturbations around
the nominal equilibrium is investigated by Fourier spectral
decomposition b(r, t) =

∑
mn bmn(r)ej(tω+mθ+nφ), yield-

ing a discrete enumeration (m,n) of Fourier eigenmodes
bmn(r) with associated growth-rate γmn = jωmn, after
matching of boundary conditions. Eigenfunction first-order
derivative discontinuity at r = rw determines modal growth-
rate τwγmn = [ rb

′
r

br
]rw+
rw− (1(b)). These modes are the resistive-

wall modes (RWMs), growing on the resistive time-scale set
by the magnetic diffusion time τw. For the magnetic con-
finement configuration considered in this paper, the reversed-
field pinch (RFP), named for its characteristic toroidal field
reversal near the plasma boundary, it is customary to classify
eigenmodes as resonant/non-resonant and internal/external.
Internal modes share helicity with the equilibrium magnetic
field inside the reversal surface, while external modes are
reversed in this sense. Ideal resonant perturbations are zeroed
for 0 < r < rs < ra, rs being the resonant position, as
motivated in e.g. [11]. Resistive resonant modes are known
as tearing modes (TMs), and are usually treated by inserting
a thin resistive layer at rs, and they typically seed magnetic
islands governed by nonlinear dynamics [12]. Here, only
ideal MHD modes are considered, modeled by

τmnḃ
r
mn − τmnγmnbrmn = MmnImn = br,extmn (1)

where brmn is the radial Fourier component of the perturbed
field, Mmn, Imn respectively a geometric coefficient and a
fourier harmonic for the external active coil current, while
τmn is the mode-specific penetration time. A range n of
unstable modes emerge for m = 1 (fig. 1(b)).

For a perfectly symmetric resistive wall, RWMs are un-
coupled in ideal MHD regime, and growth rates are non-
complex. Experimental support for this model (1) is reported
in e.g. [10], [13], [4].

1Indeed, a good approximation for large aspect-ratio (R/ra) devices,
such as EXTRAP-T2R: R = 1.24m, ra = 0.183m

(a) Cartoon of RFP magnetic
equilibrium structure, vacuum
vessel, sensor (blue) and actuator
(red) saddle coils.

−40 −20 0 20 40
−25

−20

−15

−10

−5

0

5

γ m
,n

τ w

n

 

 

unstable

stable

1
3
5

(b) Theoretical growth-rates
τwγmn. Integer-n non-resonant
positions (RWMs) are marked
(*) for m = 1.

Σ F (s) e−sτh
κ

(τas+1)(τcs+1) GT2R(s)

−1

v1(t)
r(t)

uDAC(t) usys(t)

ysys(t)

(c) Closed-loop schematics. Taps indicate available measurements.

Fig. 1. RFP device 1(a) and RWM spectrum 1(b). All signal
routings 1(c) are 64 parallel channels.

B. MIMO plant modeling by geometric coupling of SISO
dynamics

From Faraday’s and Biot-Savart’s laws and assuming an
ideal integrator on the sensor coil output voltage, the system
dynamics write in the standard state-space form as





ẋ = Ax +Bu +Nv1

z = Mx
y = Cx + v2

(2)

where x ∈ R2NmNn is the vector of MHD-modes brmn,
u ∈ RNu is the active coil currents, z ⊂ x is the optional
performance vector channel and y denotes time-integrated
sensor voltages, corresponding to a measure of mode x
(time-averaged radial magnetic field). A, B, C, M and N
are matrices of appropriate dimensions, v1 is an exogenous
signal, further detailed in section II-C.2, and v2 is a white
noise signal. State matrix elements are obtained from

Amn,m′n′ ∼γmnδmn,m′n′

Bmn,ij ∼τ−1
mn

∫

Ω

e−ι(mθ+nφ)

(
r̂ ·
∮

lij

dlij × (r− rij)

|r− rij |3

)
dΩ

Cpq,mn ∼
∫

Ω

e+ι(mθ+nφ)fpqApqdΩ

(3)

where mn, ij and pq enumerate Fourier modes, active coils
and sensor coils, respectively, and fpq , Apq are sensor coils
aperture and area functions. The integration set Ω is a full
period of the toroidal surface (θ, φ) ∈ [−π, π[×[−π, π[.

In the following, state matrices in (2)-(3) are instantiated
for T2R geometry and routing. Note that the consideration



of both intrinsic field-errors and peripheral dynamics is
imperative for simulating open- and closed-loop shots2 [14],
[3].

1) Modes coupling and aliasing of spatial frequencies:
The finite spatial arrays of sensors and actuators fundamen-
tally affect the transition from a single-mode to a multiple-
mode model due to aliasing. It generally renders the sensors
and actuators imprecise, and even introduce a bias. Aliasing
also has an important impact on the closed-loop control, as
a zero on the output could in reality be a combination of
non-zero modes

∑
mn bmn, deceptively summing to a small

number. The traditional IS regulator [6] consequently drives
the output to zero but does so happily ignorant of individual
mode amplitudes. This is a fairly recent appreciation of the
need for further development of control systems for MHD
experiments [15], [14]. Indeed, IS operation typically excites
higher mode numbers, which are, supposedly, stable and
mainly transient.

TABLE I
CHARACTERISTIC TIMES FOR CURRENT SETUP OF T2R.

Symbol Value/order Description/comment
τw ∼ 10 ms Resistive wall time
τmn . 1

2
τw Actual model mode time

τMHD ∼ 1µs Internal MHD activity/fluctuations
τd 100µs Digital sampling time, controller cycle
τh ∼ 100µs Control latency, dead time
τCPU < 100µs Algorithm-dependent part of τh
τa 8µs Active amplifier first-order time
τc 1 ms Active coil L/R-time
τA&D ∼ 1µs ADC/DAC settle, ns/µs respectively

2) Actuators dynamics, latencies and PID control: Con-
sideration of the actuators dynamics and control latency is
essential for a realistic description of the control problem,
as detailed in [3]. Table I suggests3 that we can consider a
(lumped) active amplifier and an active coil model together
with a dead-time τh in series with RWM dynamics. Using
a first-order description, the system input usys(t) is inferred
from the digital control signal uDAC(t) through a relation-
ship

usys(t) ≈
1

τcs+ 1
κ

τas+ 1
uDAC(t− τh) (4)

Introducing the system (Aξ, Bξ, Cξ) to describe the previous
dynamics, the resulting state-space matrices (Ā, B̄, C̄) are
obtained as

Ā =
(

A BCξ
0 Aξ

)
, B̄ =

(
0
Bξ

)
, C̄ = ( C 0 )

The closed-loop dynamics, using a PID controller, is
obtained as follows. The state considered is x̃ = (xT qT )T ,
which includes the integrator state q(t) =

∫ t
−∞ e(τ)dτ ,

where e(t) = y(t) is the error (the reference is zero). Mod-
eling the derivative action by finite time-difference renders

2One single experiment is known as a shot. Open- and closed-loop here
specifically refers to RWMs.

3Neglecting τA&D and quantization.

tyk−1 yk yk+1

uk−1 uk uk+1

τd

τh

ysys(t)

uDAC(t− τh)

τCPU

Fig. 2. Delay from control system. Note τh, dependent of control
algorithm, possibly greater than τd but obviously τCPU < τd for a
working system. Sample frequency fs = 1/τd. Input yk sampled
from sensor coils, output uk is the DAC-output subsequently fed
to the active coil amplifiers as augmented system input.

the controller

uDAC(t) = Kpe(t) +Kiq(t) + τ−1
d Kd(e(t)− e(t− τd))

The closed-loop dynamics is consequently obtained as

˙̃x(t) = A0x̃(t) +A1(θ)x̃(t− τh)
+A2(θ)x̃(t− τh − τd) + Ev1(t) (5)

where the control parameters θ = (Kp,Ki,Kd) enter
affinely and

A0 =

(
Ā 0
C̄ 0

)
,A1(θ) =

(
B̄(Kp +Kd/τd)C̄ B̄Ki

0 0

)

A2(θ) =

(
B̄(−Kd/τd)C̄ 0

0 0

)
, E =

(
N̄
0

)

(6)
Note that the gain matrices have a diagonal form Kη = kηI ,
where kη is a scalar and η ∈ {p, i, d} for the IS scheme.

C. Open-loop error estimation and parameter identification

Here, see fig. 1(c), an error field v1 estimate is obtained
from experimental data via model-based filtering of open-
loop (in the sense of RWM-control) shots, while actuators
Gact(s) are found by straighforward parametric identifica-
tion. The controller cycle time τd is set at a nominal value
τd = 100µs.

1) Actuators dynamics identification: In order to identify
the actuator dynamics (4), we consider the transfer chan-
nels i: uijDAC(t) 7→ uijsys(t), for each experiment j. The
amplifiers’ time constants τ ija are fixed and we identify the
remaining parameters ρij .= {τ ijc , τ ijh , κij}. Following the
approach presented in the previous section (MIMO model
built from a set of SISO dynamics), we determine the optimal
averaged model ρ∗ = 〈〈ρij∗〉i〉j . This model averages the
optimal parameters ρij∗ = arg minρij J ij that minimize the
error functional

J2(ρij) =
1
T

∫ T

0

(
uijsys(τ)− uijsim(τ, ρij)

)2

dτ

where usys is the experimental data and usim is the model
output, for each transfer channel.

A real-time PRBS (pseudorandom binary sequence) gen-
erator [16] was implemented producing 64× parallel SISO
identification inputs. This generator spent ∼ 5µs per cycle



of τCPU and can thus be considered to yield an identi-
fication of minimum latency. The optimal set of parame-
ters ρij∗ is obtained by minimizing J(ρij) with a Quasi-
Newton method initialized from a nominal guess ρij0 =
(1ms, 100µs, 4A/V). The overall average model ρ∗ was
found to be (τ∗c , τ

∗
h , κ
∗) = (0.989ms, 77.7µs, 3.96A/V) by

residual minimization. A finite difference gradient approxi-
mations and a scaling of the decision variables to the order
of unity led to a rapid convergence (1-14 iterations ∀i, j) of
the numerical scheme.

The identification data set shows channel-by-channel vari-
ations and all the computations involving the full MIMO
model (2) consequently use the individual channel averages
〈ρi,j〉j , except for the time-delay, which is set identical for
all channels. A worst-case τh (using maximum τCPU ) ex-
ceeding 200µs is consistent with recorded data for particular
channels.

2) Error-field estimation and filtering: To estimate the
error-field time-evolution, a set of open-loop shots are an-
alyzed in the scope of model (2). A standard Kalman Filter
(KF, e.g. [17]) is formed from (2) by adding placeholder
states that represent the error-field τsẋs + xs = 0. More
precisely, the KF estimates the state vector for





˙̃x =

(
A N
0 −τ−1

s I

)
x̃ +

(
B
0

)
u + v′1

y =
(
C 0

)
x̃ + v2

(7)

where x̃(t) .= (x(t)T xs(t)T )T , and v′1 and v2 are white
noise. The filter takes (u(t)T y(t)T )T as inputs and outputs
the state-estimate ˆ̃x = (x̂T (t) x̂Ts (t))T . Note that the esti-
mated error field x̂s(t) has a specific physical interpretation
as it corresponds to a driving term for inter alia RWM-
instabilities. The KF is tuned for very fast error-state x̂s
due to the fact that an error in the growth-rate γtruemn =
γnominalmn + γ

(1)
mn(t) affects in principle v1. This is expressed

by the relation

τmnḃ
r
mn = τmn

{
γmn + γ(1)

mn(t)
}
brmn + br,errmn + br,actmn

= τmnγmnb
r
mn + br,errmn,eff + br,actmn

which implies that the effective error br,errmn,eff ≡
τmnγ

(1)
mn(t)brmn + br,errmn , associated with v1 in the model

considered, depends on the mode amplitude itself. The
discretized augmented model (7) is used for offline smooth-
ing with the well-known Rauch-Tung-Striebel [17] forward-
backward algorithm.

III. STABILITY ANALYSIS AND DELAY EFFECTS
Consider the (asymptotic) stability of the DDE-class (5).

The corresponding characteristic equation of (5) reads as (for
n = 2)

det ∆(s) = det

(
sI −A0 −

n∑

i=1

Aie−sτi

)
= 0 (8)

It is well-known that (8) has an infinite number of roots s =
λj and that (5) has a point spectrum. Furthermore, since the
set {λj : det ∆(λj) = 0, Re(λj) > a} with a real is finite

(see, e.g., [18] and the references therein), it follows that the
stability problem is reduced to analyze the location of the
rightmost characteristic roots with respect to the imaginary
axis (see, for instance, [19] for numerical computations).

Finally, the continuity properties of the spectral abscissa
with respect to the system parameters (including the delays)
allows a better understanding of the effects induced by the
parameters’ change on the stability of the system. Without
entering into details, such properties will be exploited in the
sequel. For the sake of brevity, we will discuss some of the
properties of our delay system without giving a complete
characterization of the stability regions in the corresponding
parameter space. Such an issue will be addressed in a
different work.

A. Mode-control and perfect decoupling; SISO dynamics

Consider here a fictitious situation where perfect actuators
and sensors are available (in a no-aliasing sense; infinite
array of vanishing-size coils). Ideally, we could then, ac-
cording to (1), measure and affect each Fourier mode (m,n)
independently, achieving perfect decoupling and effectively
reducing the dynamics to a SISO system with actuator delay:

Gmn(s) =
1

τmns− τmnγmn
1

τcs+ 1

1

τas+ 1
e−sτh (9)

readily converted to a closed-loop description (5) with Ai ∈
R4×4. A static mode-control (MC) decoupling controller
would typically be computed by taking SVD pseudoinverses
of (3), and it can be demonstrated that doing this produce
aliased side-bands on the inverse approximations [14]. IS op-
eration, considered here is “far-from-perfect” mode-control,
but the underlying SISO dynamics (1) is fundamentally
important, and is considered a benchmark case. Fig. 3(a)
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Fig. 3. Stability and time-delay impact on RWM dynamics.

shows stability contours (maxj Re(λj) = 0) for τh =
{100− 400µs} in RWM parameter space (τ, γ), for fixed
PID gains4 θold = (−10.4,−1040,−0.0026).

In fig. 3(a) Resonant-field amplification (RFA) regions [13]
are indicated, an effect related to the error-field, as modeled
in (7).

4When quoting numerical gains: kη correspond to dimensionless loop-
gains (negative), related to (positive) experiment settings kη = βKη [3],
with a nominal conversion factor β = −6.5× 10−2.



B. Spectrum dependence on τh; MIMO and SISO cases

Consider now the dependence of the spectral abscissa
with respect to the parameter τh. In this sense, we fix the
gains (Kp,Ki,Kd) = (146, 57000, 0.085) and the delay
τd = 100µs for IS operation on full MIMO model (5), and
we will concentrate on the effects induced by varying the
delay τh. Computing rightmost closed-loop roots, critical
crossing of the imaginary axis occurs at τh ≈ 201µs.
This compared to the SISO-set analog 3(b) where instability
occurs at τh ≈ 225µs. The set of modes was in both cases
K = {1, 3}×{−24, . . . ,+23}. In conclusion, plant geometry
lowers latency stability margin.

IV. MODEL-BASED CONTROL AND DELAY
COMPENSATION

Our aim is to select PID gains for DDE (5) to ensure
stability and minimize the closed-loop spectral abscissa. The
PID in the actual experiment control system (IS) is regarded
as fixed, imposing a structural constraint on the optimization
problem. A fixed-order/fixed-structure controller synthesis
approach is utilized to find gains for T2R IS operation. The
method, as instantiated in this work, concerns model (5),
i.e. it handles time-delays explicitly, which has a significant
practical benefit: developing control algorithms with varying
computational complexity (varying τCPU ) implies varying
τh, which can be accounted for.

It is recognized that other widely spread iterative tuning
techniques such as [20] also could be applied for this
particular problem. This is subject for the sequel.

A. Direct eigenvalue optimization (DEO)

The asymptotic damping maximization of (5) is formu-
lated as minimizing the spectral abscissa of the characteristic
equation [18] with

θ∗ = arg min
θ

max
λ
{Re (λ) : det ∆(λ, θ) = 0}

This problem is generally both nonconvex and nonsmooth,
which motivates a hybrid SISO/MIMO method. The gen-
eral MIMO problem size (5) is typically large; e.g. a set
(m,n) ∈ K = M×N = {1, 3} × {−16, . . . ,+15} results
in Ai ∈ R384×384. However, for IS, each coil measures a
linear combination of fundamental dynamics (1) over K,
but does not discriminate between modes. This relates to
the previously discussed hypothesis that the MIMO model
can be approximated by a set of SISO systems. The MIMO
optimization problem is then approximated to the problem
of minimizing the maximum SISO spectral abscissas over K
with

θ̃∗ = arg min
θ

max
k∈K

max
λ
{Re (λ) : det ∆k(λ, θ) = 0} (10)

where ∆k denotes the characteristic matrix (∈ R4×4) for
(5) for a single mode k = (m,n). We employ the re-
cently developed gradient-sampling (GS) method [21], a
robustified steepest-descent method suitable for nonsmooth
optimization, to solve (10) using finite difference gradient
approximations.

We investigate two different parameterizations of the con-
troller, implicitly assigning the closed-loop performance and
control-input norm, respectively by:

a) varying kp and searching for the optimal θ̃∗ = (k∗i , k
∗
d)

for a nominal τh, and
b) varying τh and determining the full optimal PID θ̃∗ =

(k∗p, k
∗
i , k
∗
d).

The mode-sets are considered for a)−b) were K1 = {1, 3}×
{−16, . . . ,+15} and K2 = {1, 3} × {−24, . . . ,+23} re-
spectively. In a) τh = 77.7µs corresponding to the minimum
actuator latency.

B. Optimization results

k
i

k d

k
p
=−10.4
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Fig. 4. Closed-loop spectrum optimization.

Gain design strategy a), where the optimal (k∗i , k
∗
d) are

obtained with preset values of kp and τh is illustrated in
Fig. 4, which depicts the rightmost values of the closed-
loop spectrum for a fixed kp in (ki, kd)-space (the optimum
corresponding to the darkest region). The bold dotted line
corresponds to the evolution of (k∗i , k

∗
d) when kp varies

(going left when the magnitude of kp is increased). The red
line in the upper left corner is the stability boundary and
the rectangle in upper-right corner is the region of uniformly
randomized initializations for the GS method.

Comparable numerical values were obtained for gain de-
sign strategy b). A few optimal settings are seen in table II.
For b) the minimum objective value is increased (spectral
abscissa traveling rightwards) as the time-delay increases, as
expected.

The optimization algorithm was numerically robust on
problems a), b). All runs converged, normally within 10−30
iterations, from randomized starting controllers. Multiple
runs were taken for each controller, yielding identical results
(within reasonable numerical accuracy).

V. EXPERIMENTAL RESULTS

The new control approach presented in the previous sec-
tions motivated new series of experiments on T2R: shot num-
bers #20743−#20755 and #20824−#20838. Experimen-
tal plasma equilibrium conditions were set with a toroidal
plasma current Ip ≈ 85 kA, a shot length τp =∼ 50− 70 ms
and reversal and pinch parameter values (typically used to
characterize RFP equilibria [8]) (F,Θ) ≈ (−0.27, 1.72).



TABLE II
T2R EXPERIMENTAL RESULTS.

[Jy ] = (mT)2 × 10−3 , [Ju] = (A)2 × 103 .

Shot# Kp Ki Kd Jy Ju Remark
20743 150 16000 0.05 1.04 1.66 old gain 1
20744 160 16000 0.04 1.14 1.80 old gain 2
20746 106 37500 0.061 0.581 2.12 series a)
20747 126 47500 0.073 0.808 1.94 a)
20827 150 16000 0.05 1.12 1.60 old gain 1
20833 119.6 46800 0.065 0.680 1.77 b)
20835 106.8 39860 0.058 0.645 1.64 b)

We only consider strict IS performance in terms of plant
output, and introduce a suitable scalar measure to compare
experimental (and simulated) performance.

A. Generic measure of experimental performance

The overall controller performance is summarized with the
general quadratic measure

Jx(θ̃) ≡ 1
t1 − t0

∫ t1

t0

xT (τ, θ̃)Qxx(τ, θ̃)dτ (11)

where x = ysys or usys, and θ̃ the controller setting. We do
not consider any specific channel weighting (Qy = Qu =
I ∈ R64×64) and the integral is approximated by trapezoidal
summation of non-filtered sampled data. The nature of T2R
shots [3] suggests a split of the timespan [t0, t1] into two
parts, corresponding to the transient (first 10 ms) and steady-
state behaviors (between 10 and ∼ 50 ms).

B. Performance improvements

The performance improvements are summarized in Table
II for the steady-state interval 10−45ms, using cost function
(11). The optimized controllers a) and b) clearly reveal a
significant 44% (1− 0.581/1.04) reduction of average field
energy at the sensors during steady-state period. This is
at the expense of a higher input power, increased by 28%
(2.12/1.66 − 1). Furthermore, simulations with the MIMO
model, as driven by the identified v1 of section II-C.2, reveal
that the old PID coefficients are significantly suboptimal in
both full model (2) and experiment compared to the new PID
coefficients.

VI. CONCLUSIONS

A new model for MHD instabilities in T2R, explicitly
including important geometrical and engineering aspects was
presented. Direct closed-loop PID gain optimization for the
corresponding DDE model was shown to provide useful
results for experimental IS feedback in a RFP fusion research
device. Simulations and experiments for the T2R device have
shown some qualitative agreement, further indicating the
applicability of the model to real experimental conditions.
In short, results strongly encourage future work, theoretically
and experimentally, in both physical modeling and multivari-
able control.
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